1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scorpion4ik [409]
3 years ago
14

Which term describes a function in which the y-values form a geometric sequence

Mathematics
1 answer:
romanna [79]3 years ago
8 0
The geometric sequence is a sequence in which the proceeding number is equal to the preceeding number multiplied by a ratio. The expression that represents this sequence is an = a1*r^(n-1) where r is the ratio and n is an integer. This type of formula is exponential
You might be interested in
Help please!!!!!!!!!
In-s [12.5K]

ANSWER

24


EXPLANATION

For a matrix A of order n×n, the cofactor C_{ij} of element a_{ij} is defined to be


   C_{ij} = (-1)^{i+j} M_{ij}


M_{ij} is the minor of element a_{ij} equal to the determinant of the matrix we get by taking matrix A and deleting row i and column j.


Here, we have


   C_{11} = (-1)^{1+1} M_{11} = M_{11}


M₁₁ is the determinant of the matrix that is matrix A with row 1 and column 1 removed. The bold entries are the row and the column we delete.


   \begin{aligned} A=\begin{bmatrix} \bf 1 & \bf -6 & \bf -4\\ \bf 7 & 0 & -3 \\ \bf -9 & 8 & -8 \end{bmatrix} \implies M_{11} &= \text{det}\left(\begin{bmatrix} 0&-3 \\ 8&-8 \end{bmatrix} \right)  \end{aligned}


Since the determinant of a 2×2 matrix is


   \det\left(  \begin{bmatrix} a & b \\ c& d  \end{bmatrix} \right) = ad-bc


it follows that


   \begin{aligned} A=\begin{bmatrix} \bf 1 & \bf -6 & \bf -4\\ \bf 7 & 0 & -3 \\ \bf -9 & 8 & -8 \end{bmatrix} \implies M_{11} &= \text{det}\left(\begin{bmatrix} 0&-3 \\ 8&-8 \end{bmatrix} \right) \\ &= (0)(-8) - (-3)(8) \\ &= -(-24) \\ &= 24 \end{aligned}


so C_{11} = M_{11} = 24

4 0
3 years ago
What additional information is necessary to prove that SILY is a parallelogram
kirza4 [7]

Answer:

Are the sides parallel?

Step-by-step explanation:

8 0
4 years ago
Evaluate 5c+cd when c=1/5 and d=15
Ad libitum [116K]
5c = 1
cd = 3
5c + cd = 4
8 0
4 years ago
Read 2 more answers
What the simplest form for 5 4/32?
stira [4]
Ok so the answer is 160/32
4 0
3 years ago
Read 2 more answers
First question, thanks. I believe there should be 3 answers
zysi [14]

Given: The following functions

A)cos^2\theta=sin^2\theta-1B)sin\theta=\frac{1}{csc\theta}\begin{gathered} C)sec\theta=\frac{1}{cot\theta} \\ D)cot\theta=\frac{cos\theta}{sin\theta} \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

To Determine: The trigonometry identities given in the functions

Solution

Verify each of the given function

\begin{gathered} cos^2\theta=sin^2\theta-1 \\ Note\text{ that} \\ sin^2\theta+cos^2\theta=1 \\ cos^2\theta=1-sin^2\theta \\ Therefore \\ cos^2\theta sin^2\theta-1,NOT\text{ }IDENTITIES \end{gathered}

B

\begin{gathered} sin\theta=\frac{1}{csc\theta} \\ Note\text{ that} \\ csc\theta=\frac{1}{sin\theta} \\ sin\theta\times csc\theta=1 \\ sin\theta=\frac{1}{csc\theta} \\ Therefore \\ sin\theta=\frac{1}{csc\theta},is\text{ an identities} \end{gathered}

C

\begin{gathered} sec\theta=\frac{1}{cot\theta} \\ note\text{ that} \\ cot\theta=\frac{1}{tan\theta} \\ tan\theta cot\theta=1 \\ tan\theta=\frac{1}{cot\theta} \\ Therefore, \\ sec\theta\ne\frac{1}{cot\theta},NOT\text{ IDENTITY} \end{gathered}

D

\begin{gathered} cot\theta=\frac{cos\theta}{sin\theta} \\ Note\text{ that} \\ cot\theta=\frac{1}{tan\theta} \\ cot\theta=1\div tan\theta \\ tan\theta=\frac{sin\theta}{cos\theta} \\ So, \\ cot\theta=1\div\frac{sin\theta}{cos\theta} \\ cot\theta=1\times\frac{cos\theta}{sin\theta} \\ cot\theta=\frac{cos\theta}{sin\theta} \\ Therefore \\ cot\theta=\frac{cos\theta}{sin\theta},is\text{ an Identity} \end{gathered}

E

\begin{gathered} 1+cot^2\theta=csc^2\theta \\ csc^2\theta-cot^2\theta=1 \\ csc^2\theta=\frac{1}{sin^2\theta} \\ cot^2\theta=\frac{cos^2\theta}{sin^2\theta} \\ So, \\ \frac{1}{sin^2\theta}-\frac{cos^2\theta}{sin^2\theta} \\ \frac{1-cos^2\theta}{sin^2\theta} \\ Note, \\ cos^2\theta+sin^2\theta=1 \\ sin^2\theta=1-cos^2\theta \\ So, \\ \frac{1-cos^2\theta}{sin^2\theta}=\frac{sin^2\theta}{sin^2\theta}=1 \\ Therefore \\ 1+cot^2\theta=csc^2\theta,\text{ is an Identity} \end{gathered}

Hence, the following are identities

\begin{gathered} B)sin\theta=\frac{1}{csc\theta} \\ D)cot\theta=\frac{cos\theta}{sin\theta} \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

The marked are the trigonometric identities

3 0
2 years ago
Other questions:
  • 4 1<br> __ / ( - __ )<br> 5 15
    13·1 answer
  • Solve |2x - 3| + 5 =10.
    12·1 answer
  • If AC = 15 centimeters, and BC = 12 centimeters, which does AB equal
    6·1 answer
  • PLZ HELP ME IM TIMED YOU GUYS
    15·1 answer
  • HELP ME A bag contains only red and blue marbles. Yasmine takes one marble at random from the bag. The probability that she take
    14·1 answer
  • Please help!!!! The question is in the picture
    10·1 answer
  • Solid fats are more likely to raise blood cholesterol levels than liquid fats. Suppose a nutritionist analyzed the percentage of
    9·1 answer
  • Which expression is equivalent to -3x + 9?
    14·2 answers
  • Multiply the following and provide the product in standard from thank you
    9·1 answer
  • I am struggling with my math. help me please<br><br><br>HELP ME!!!!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!