Can you show a picture so I can help??? :)
Answer:
the first statement
Explanation:
hope this helps
please like and Mark as brainliest

If the half-life of a sample of a radioactive substance is 30 seconds, how much would be left after 60 seconds? <span>
A. one-fourth</span>
Answer:
1.58x10⁻⁵
2.51x10⁻⁸
0.0126
63.10
Explanation:
Phenolphthalein acts like a weak acid, so in aqueous solution, it has an acid form HIn, and the conjugate base In-, and the pH of it can be calculated by the Handerson-Halsebach equation:
pH = pKa + log[In-]/[HIn]
pKa = -logKa, and Ka is the equilibrium constant of the dissociation of the acid. [X] is the concentrantion of X. Thus,
i) pH = 4.9
4.9 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = - 4.8
[In-]/[HIn] = 
[In-]/[HIn] = 1.58x10⁻⁵
ii) pH = 2.1
2.1 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = -7.6
[In-]/[HIn] = 
[In-]/[HIn] = 2.51x10⁻⁸
iii) pH = 7.8
7.8 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = -1.9
[In-]/[HIn] = 
[In-]/[HIn] = 0.0126
iv) pH = 11.5
11.5 = 9.7 + log[In-]/[HIn]
log[In-]/[HIn] = 1.8
[In-]/[HIn] = 
[In-]/[HIn] = 63.10
Answer:
0.159 \%
Explanation:
The acid will dissociate according to the reaction shown below:-

Given that, pH=3.8
The concentration of can be determined from the expression fo pH as:-
pH = - log ![[H^+]](https://tex.z-dn.net/?f=%5BH%5E%2B%5D)
3.8 = - log ![[H^+]](https://tex.z-dn.net/?f=%5BH%5E%2B%5D)
= 
The initial concentration of RCOOH was 0.10 M, then the percent dissociation was- calculated as shown below:-
