Answer:
4.8 g/mL is the density of chloroform vapor at 1.00 atm and 298 K.
Explanation:
By ideal gas equation:

Number of moles (n)
can be written as: 
where, m = given mass
M = molar mass

where,
which is known as density of the gas
The relation becomes:
.....(1)
We are given:
M = molar mass of chloroform= 119.5 g/mol
R = Gas constant = 
T = temperature of the gas = 
P = pressure of the gas = 1.00 atm
Putting values in equation 1, we get:

4.8 g/mL is the density of chloroform vapor at 1.00 atm and 298 K.
Answer:
B) atom of Xenon
Explanation:
Xenon is already stable alone, because it has a complete octet, or 8 electrons. This graph is not an ion because it shows xenon is its default state, consisting of 8 electrons.
It is not a molecule because a molecule is a group of atoms, or a compound, what is shown is a singular atom.
Potassium oxide is an ionic compound. The potassium has a charge of <span>K+</span> and oxygen has a charge of <span>O<span>2−</span></span>. We need 2 potassium ions to balance one oxide ion making the formula <span><span>K2</span>O</span>.
Potassium hydroxide is an ionic compound. The potassium has a charge of <span>K+</span> and hydroxide has a charge of <span>OH−</span>. We need 1 potassium ion to balance one hydroxide ion making the formula KOH.
<span><span>K2</span>O+<span> H2</span>O→KOH</span>
To balance the equation we place a coefficient of 2 in front of the potassium hydroxide.
<span><span>K2</span>O+<span>H2</span>O→2KOH</span>
I hope this was helpful.
El antiácido reacciona con el ácido para producir un sal y agua. Esto es una reacción de neutralización.
Answer:
Relief is typically defined as the difference in height between the high point and the low point on a landscape, in feet or in meters.
Explanation: