Answer:
0.75, 1.25
Step-by-step explanation:
first we bring the line equation into the same format as the parabola equation (y = ...)
3x - y = 1
=>
y = 3x - 1
now we can say for the intersection points both equations must have the same result.
4x² - 1 = 3x - 1
4x² - 3x = 0
x(4x - 3) = 0
there are only 2 possible cases to make this true :
x = 0
and 4x - 3 = 0
4x = 3
x = 3/4 = 0.75
for the y value let's use the easier equation (line) :
y = 3×3/4 - 1 = 9/4 - 4/4 = 5/4 = 1.25
Answer: Explanation:First, let's call the number of 2 cent coins: tNext, let's call the number of 5 cent coins: fWe can then write to equations from the information in the problem.Equation 1: t+f=40Equation 2: 0.02t+0.05f=1.55Step 1) Solve the first equation for t:t+f=40t+f−f=40−ft+0=40−ft=40−fStep 2) Substitute (40−f) for t in the second equation and solve for f:0.02t+0.05f=1.55 becomes:0.02(40−f)+0.05f=1.55(0.02×40)−(0.02×f)+0.05f=1.550.80−0.02f+0.05f=1.550.80+(−0.02+0.05)f=1.550.80+0.03f=1.550.80−0.80+0.03f=1.55−0.800+0.03f=0.750.03f=0.750.03f0.03=0.750.030.03f0.03=25f=25Step 3) Substitute 25 for f in the solution to the first equation at the end of Step 1 and calculate t:t=40−f becomes:t=40−25t=15The Solution Is:There are:15 two cent coins25 five cent coins
Step-by-step explanation:
Answer:
i think C. if i am right tell me
Step-by-step explanation:
Same thing as before!
First, we can get rid of d(x) simply by looking at it because we can tell it's linear (it's a straight line). If we look at the table, we can see a(x) is also linear because it has a steady rate of growth. b(x) and c(x) both represent exponential growth. The curved shape of b(x) shows us this is exponential growth, and the exponent in c(x) tells us it's also exponential.
Answer:
y
=
2
x
−
1
Explanation:
First, we need to determine the slope of the line. The formula for determining the slope of a line is:
m
=
y
2
−
y
1
x
2
−
x
1
where
m
is the slope and the x and y terms are for the points:
(
x
1
,
y
1
)
and
(
x
2
,
y
2
)
For this problem the slope is:
m
=
3
−
−
1
2
−
0
m
=
3
+
1
2
m
=
4
2
m
=
2
Now, selecting one of the points we can use the point slope formula to find the equation.
The point slope formula is:
y
−
y
1
=
m
(
x
−
x
1
)
Substituting one of our points gives:
y
−
−
1
=
2
(
x
−
0
)
y
+
1
=
2
x
Solving for
y
to put this in standard form gives:
y
+
1
−
1
=
2
x
−
1
y
+
0
=
2
x
−
1
y
=
2
x
−
1
Answer linky
=
2
x
−
1
Explanation:
First, we need to determine the slope of the line. The formula for determining the slope of a line is:
m
=
y
2
−
y
1
x
2
−
x
1
where
m
is the slope and the x and y terms are for the points:
(
x
1
,
y
1
)
and
(
x
2
,
y
2
)
For this problem the slope is:
m
=
3
−
−
1
2
−
0
m
=
3
+
1
2
m
=
4
2
m
=
2
Now, selecting one of the points we can use the point slope formula to find the equation.
The point slope formula is:
y
−
y
1
=
m
(
x
−
x
1
)
Substituting one of our points gives:
y
−
−
1
=
2
(
x
−
0
)
y
+
1
=
2
x
Solving for
y
to put this in standard form gives:
y
+
1
−
1
=
2
x
−
1
y
+
0
=
2
x
−
1
y
=
2
x
−
1
Answer link