A=5,000×(1+0.03)^(7)
A=6,149.37
Interest earned=1149.37
<h2>
The area of a triangle is =54 square units</h2><h2>
The perpendicular distance from B to AC is = 
</h2>
Step-by-step explanation:
Given a triangle ABC with vertices A(2,1),B(12,2) and C(12,8)

The area of a triangle is= ![\frac{1}{2} [x_1(y_2-y_3) +x_2 (y_3- y_1)+x_3(y_1-y_2)]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%5Bx_1%28y_2-y_3%29%20%2Bx_2%20%28y_3-%20y_1%29%2Bx_3%28y_1-y_2%29%5D)
=![|\frac{1}{2} [2(2-8+12(8-1)+12(1-2)]|](https://tex.z-dn.net/?f=%7C%5Cfrac%7B1%7D%7B2%7D%20%5B2%282-8%2B12%288-1%29%2B12%281-2%29%5D%7C)
=
= 54 square units
The length of AC = 
= 
=
units
Let the perpendicular distance from B to AC be = x
According To Problem

⇔
units
Therefore the perpendicular distance from B to AC is = 
Hello :
<span>(x 4 +5x² - 36)(2x ²+ 9x - 5) = 0</span>
Answer:
248
Step-by-step explanation:
Solution for What is 400 percent of 62:
400 percent *62 =
(400:100)*62 =
(400*62):100 =
24800:100 = 248
Now we have: 400 percent of 62 = 248
Question: What is 400 percent of 62?
Percentage solution with steps:
Step 1: Our output value is 62.
Step 2: We represent the unknown value with $x$.
Step 3: From step 1 above,$62=100\%.
Step 4: Similarly, x=400\%.
Step 5: This results in a pair of simple equations:
62=100\%(1).
x=400\%(2).
Step 6: By dividing equation 1 by equation 2 and noting that both the RHS (right hand side) of both
equations have the same unit (%); we have
\frac{62}{x}=\frac{100\%}{400\%}
Step 7: Again, the reciprocal of both sides gives
\frac{x}{62}=\frac{400}{100}
\Rightarrow x=248
Therefore, 400 of 62 is 248
Answer:
make the answwer a decimal
Step-by-step explanation:
the fraction need to be a decimal