7.44-6.26=1.18
1.18 in minutes is 78 minutes bc 1 hour is 60 minutes + 18 minutes is 78
Hope this helps :D
Given the image attached, the segment bisector that divides XY into two and the length of XY are as follows:
- Segment bisector of XY = line n
- Length of XY = 6
<em><u>Recall:</u></em>
- A line that divides a segment into two equal parts is referred to as segment bisector.
In the diagram attached below, line n divides XY into XM and MY.
Thus, the segment bisector of XY is: line n.
<em><u>Find the value of x:</u></em>
XM = MY (congruent segments)

- Collect like terms and solve for x

XY = XM + MY


Therefore, given the image attached, the segment bisector that divides XY into two and the length of XY are as follows:
- Segment bisector of XY = line n
- Length of XY = 6
Learn more here:
brainly.com/question/19497953
Let h represent the height of the trapezoid, the perpendicular distance between AB and DC. Then the area of the trapezoid is
Area = (1/2)(AB + DC)·h
We are given a relationship between AB and DC, so we can write
Area = (1/2)(AB + AB/4)·h = (5/8)AB·h
The given dimensions let us determine the area of ∆BCE to be
Area ∆BCE = (1/2)(5 cm)(12 cm) = 30 cm²
The total area of the trapezoid is also the sum of the areas ...
Area = Area ∆BCE + Area ∆ABE + Area ∆DCE
Since AE = 1/3(AD), the perpendicular distance from E to AB will be h/3. The areas of the two smaller triangles can be computed as
Area ∆ABE = (1/2)(AB)·h/3 = (1/6)AB·h
Area ∆DCE = (1/2)(DC)·(2/3)h = (1/2)(AB/4)·(2/3)h = (1/12)AB·h
Putting all of the above into the equation for the total area of the trapezoid, we have
Area = (5/8)AB·h = 30 cm² + (1/6)AB·h + (1/12)AB·h
(5/8 -1/6 -1/12)AB·h = 30 cm²
AB·h = (30 cm²)/(3/8) = 80 cm²
Then the area of the trapezoid is
Area = (5/8)AB·h = (5/8)·80 cm² = 50 cm²
Answer:
7.5 if 1/5 is 15. if not, its 0.6
Step-by-step explanation: