Answer:
1) Solving the term
using F.O.I.L we get 
2) solving the term
using F.O.I.L we get 
3) Solving
using square of binomial we get 
4) Solving
using square of binomial we get 
Step-by-step explanation:
1) (3x + 5)(2x - 3). Solve using the F.O.I.L.
F.O.I.L stands for First, Outer Inner Last
We have 
First: 3x(2x)
Outer: 3x(-3)
Inner: 5(2x)
Last: 5(-3)
Solving we get:

So, solving the term
using F.O.I.L we get 
2) (x + 2)(x – 13). Solve using the F.O.I.L.
F.O.I.L stands for First, Outer Inner Last
We have 
First: x(x)
Outer: x(-13)
Inner: 2(x)
Last: 2(-13)
Solving we get:

So, solving the term
using F.O.I.L we get 
3) (x + 5)^2. Solve using the square of Binomial.
The square of binomial is: 
Solving:

So, solving
using square of binomial we get 
4) (x -3)^2. Solve using the square of Binomial.
The square of binomial used is: 
Solving:

So, solving
using square of binomial we get 