Answer:
The sequence diverges.
Step-by-step explanation:
A sequence
converges when
is a real number.
In this question, the sequence given is:

The cosine is always going to be between -1 and 1, so for the convergence of the sequence, we look it as:
. So

Since the limit is not a real number, the sequence diverges.
We know that
the equation of the parabola is of the form
y=ax²+bx+c
in this problem
y=1/4x²−x+3
where
a=1/4
b=-1
c=3
the coordinates of the focus are
(-b/2a,(1-D)/4a)
where D is the discriminant b²-4ac
D=(-1)²-4*(1/4)*3-----> D=1-3---> D=-2
therefore
x coordinate of the focus
-b/2a----> 1/[2*(-1/4)]----> 2
y coordinate of the focus
(1-D)/4a------> (1+2)/(4/4)---> 3
the coordinates of the focus are (2,3)
Answer18:
The quadrilateral ABCD is not a parallelogram
Answer19:
The quadrilateral ABCD is a parallelogram
Step-by-step explanation:
For question 18:
Given that vertices of a quadrilateral are A(-4,-1), B(-4,6), C(2,6) and D(2,-4)
The slope of a line is given m=
Now,
The slope of a line AB:
m=
m=
m=
The slope is 90 degree
The slope of a line BC:
m=
m=
m=
The slope is zero degree
The slope of a line CD:
m=
m=
m=
The slope is 90 degree
The slope of a line DA:
m=
m=
m=
m=
The slope of the only line AB and CD are the same.
Thus, The quadrilateral ABCD is not a parallelogram
For question 19:
Given that vertices of a quadrilateral are A(-2,3), B(3,2), C(2,-1) and D(-3,0)
The slope of a line is given m=
Now,
The slope of a line AB:
m=
m=
m=
The slope of a line BC:
m=
m=
m=
m=3
The slope of a line CD:
m=
m=
m=
The slope of a line DA:
m=
m=
m=3
The slope of the line AB and CD are the same
The slope of the line BC and DA are the same
Thus, The quadrilateral ABCD is a parallelogram
Percent increase : (new number - original number) / (original number)....then multiply that by 100 to get ur percent.
(5.98 - 4.6) / (4.6) = 1.38/4.6 = 0.3......0.3 x 100 = 30% <==