1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viktor [21]
4 years ago
13

Angles that measure 135 degrees and 45 degrees are complementary, True or false?

Mathematics
2 answers:
vagabundo [1.1K]4 years ago
7 0

Answer:

False

Step-by-step explanation:

Complementary angles are when either of two angles whose sum is 90°.

forsale [732]4 years ago
6 0

Answer:

FAlse

complementary angles measures 90

as 45 + 135 = 180 these are supplementary angles

Step-by-step explanation:

You might be interested in
Please Evaluate <br> 9[y^3(z-6)-5] for y=2 and z=8
mafiozo [28]
I believe the answer would be 99

plug in the variables and solve to answer this question.
3 0
3 years ago
Read 2 more answers
Your classmate says that the solutions to the given inequality are x &gt; -2. Look carefully at the work. Should your friend hav
LuckyWell [14K]

Answer:

x < -2 (No, he shouldn't have reversed the inequality symbol).

Step-by-step explanation:

Given the algebraic expression;

19 - 2(1 - x) < 13

Opening up the bracket, we have;

19 + (-2*1) + (-2*-x) < 13

19 + (-2) + (2x) < 13

19 - 2 + 2x < 13

17 + 2x < 13

Rearranging the equation, we have;

2x < 13 - 17

2x < -4

Dividing both sides by 2, we have;

<em>x < -2</em>

Hence, your friend shouldn't have reversed the inequality symbol (sign).

Note: you should only flip the inequality symbol (sign) when you're dividing by a negative number such as -2.

For example, if we had re-arranged the equation as;

17 - 13 < -2x

4 < -2x

Dividing both sides by -2, we have;

4 > x

6 0
3 years ago
Write an equation for each translation of y=|x|. 9 units down
kenny6666 [7]
To translate a function downwards by 9 units you simply subtract 9 from the function, because the resulting y value is reduced by 9 so the graph of y is reduced, shifted downwards by 9.  So if:

y=|x|  then this shifted downwards by 9 units is:

y=|x|-9
3 0
4 years ago
Help with num 1 please.​
KengaRu [80]

Answer:

(i)  \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)  \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)  \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Exponential Differentiation

Logarithmic Differentiation

Step-by-step explanation:

(i)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = (3x^2 - x)ln(2x + 1)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'
  2. Basic Power Rule/Logarithmic Differentiation [Chain Rule]:                       \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{1}{2x + 1}(2x + 1)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{2}{2x + 1}
  4. Simplify [Factor]:                                                                                           \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{x^2 + 2}{lnx}

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                               \displaystyle y' = \frac{(x^2 + 2)'lnx - (x^2 + 2)(lnx)'}{(lnx)^2}
  2. Basic Power Rule/Logarithmic Differentiation:                                           \displaystyle y' = \frac{2xlnx - (x^2 + 2)\frac{1}{x}}{(lnx)^2}
  3. Rewrite:                                                                                                         \displaystyle y' = \frac{2xlnx}{(lnx)^2} - \frac{(x^2 + 2)\frac{1}{x}}{(lnx)^2}
  4. Simplify:                                                                                                         \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = e^xln(2x)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'
  2. Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:       \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})(2x)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})2
  4. Simplify:                                                                                                         \displaystyle y' = e^xln(2x) + \frac{e^x}{x}
  5. Rewrite:                                                                                                         \displaystyle y' = \frac{xe^xln(2x) + e^x}{x}
  6. Factor:                                                                                                           \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

6 0
3 years ago
A line is parallel to y= 1/2x +6 and passes through (–8, 0). What is the equation of the line?
Harlamova29_29 [7]

Answer:

y = 1/2x + 4

Step-by-step explanation:

y = 1/2x + b

0 = -4 + b

b = 4

y = 1/2x + 4

7 0
3 years ago
Read 2 more answers
Other questions:
  • 10th of a second : A. 60.34 = 60.3 B. 60.32 = 60.3 C. 60.33 = 60.3 D.
    14·1 answer
  • A flashlight costs $12.00. The sales tax is 6%. What is the amount of the sales tax?
    15·1 answer
  • PLZ HELP!!! WILL GIVE BRANLIEST !!!
    5·2 answers
  • Algebra I WILL GIVE BRAINLIEST
    11·1 answer
  • Solve this question for me pls​
    13·2 answers
  • Missing numbrr of unit rate for 32/8= ?/1
    10·2 answers
  • This is about probability. <br>1/3<br>2/5<br>3/10 or <br>4/8? <br>Quickly please​
    6·1 answer
  • Use the diagram of the parallelogram to answer the question. 18 m 10 m 6 m *not drawn to scale What is the perimeter of the para
    7·1 answer
  • (04.01 MC)
    8·1 answer
  • The table shows the total distance that Myra runs over different time periods. A 2-column table with 5 rows titled Time and Dist
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!