1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksana_A [137]
3 years ago
9

Which statements best describe X-rays?

Physics
1 answer:
Anon25 [30]3 years ago
8 0

Answer:x rays are electromagnetic waves.

x rays are transverse waves

x rays travel at the speed of light

Explanation:

You might be interested in
A 1,70 atm, una muestra de gas ocupa 4,25 litros. Si la presión en el gas aumenta a 2.40 atm, ¿cuál será el nuevo volumen?
statuscvo [17]

At 1.70 atm, a gas sample occupies 4.25 liters. If the pressure in the gas increases to 2.40 atm, what will the new volume be?

Answer:

3.01L

Explanation:

Given parameters:

Initial pressure, P1  = 1.7atm

Initial volume, V1  = 4.25L

Final pressure, P2  = 2.4atm

Unknown:

Final or new volume, V2  = ?

Solution:

To solve this problem, we use Boyle's law which states that "the volume of a fixed mass of a gas varies inversely as the pressure changes, if the temperature is constant".

            P1 V1  = P2 V2

P1 is the initial pressure

V1 is the initial volume

P2 final pressure

V2 final volume

        1.7 x 4.25  = 2.4 x V2

             V2  = 3.01L

8 0
3 years ago
A 92kg astronaut and a 1200kg satellite are at rest relative to the space shuttle. The astronaut pushes on the satellite, giving
Harman [31]

Answer:

13.7m

Explanation:

Since there's no external force acting on the astronaut or the satellite, the momentum must be conserved before and after the push. Since both are at rest before, momentum is 0.

After the push

m_av_a + m_sv_s = 0

Where m_a = 92kg is the mass of the astronaut, m_s = 1200kg is the mass of the satellite, v_s = 0.14 m/s is the speed of the satellite. We can calculate the speed v_a of the astronaut:

v_a = \frac{-m_sv_s}{m_a} = \frac{-1200*0.14}{92} = -1.83 m/s

So the astronaut has a opposite direction with the satellite motion, which is further away from the shuttle. Since it takes 7.5 s for the astronaut to make contact with the shuttle, the distance would be

d = vt = 1.83 * 7.5 = 13.7 m

4 0
3 years ago
What is the process called when the moon begins to fade from a full moon to the new moon?
satela [25.4K]

Answer: Waning

Explanation: Not much explanation for this

8 0
4 years ago
A battery with an emf of 12.0 V shows a terminal voltage of 11.7 V when operating in a circuit with two lightbulbs, each rated a
wariber [46]
<h2>Answer:</h2>

0.46Ω

<h2>Explanation:</h2>

The electromotive force (E) in the circuit is related to the terminal voltage(V), of the circuit and the internal resistance (r) of the battery as follows;

E = V + Ir                      --------------------(a)

Where;

I = current flowing through the circuit

But;

V = I x Rₓ                    ---------------------(b)

Where;

Rₓ = effective or total resistance in the circuit.

<em>First, let's calculate the effective resistance in the circuit:</em>

The effective resistance (Rₓ) in the circuit is the one due to the resistances in the two lightbulbs.

Let;

R₁ = resistance in the first bulb

R₂ = resistance in the second bulb

Since the two bulbs are both rated at 4.0W ( at 12.0V), their resistance values (R₁ and R₂) are the same and will be given by the power formula;

P = \frac{V^{2} }{R}

=> R = \frac{V^{2} }{P}             -------------------(ii)

Where;

P = Power of the bulb

V = voltage across the bulb

R = resistance of the bulb

To get R₁, equation (ii) can be written as;

R₁ = \frac{V^{2} }{P}    --------------------------------(iii)

Where;

V = 12.0V

P = 4.0W

Substitute these values into equation (iii) as follows;

R₁ = \frac{12.0^{2} }{4}

R₁ = \frac{144}{4}

R₁ = 36Ω

Following the same approach, to get R₂, equation (ii) can be written as;

R₂ = \frac{V^{2} }{P}    --------------------------------(iv)

Where;

V = 12.0V

P = 4.0W

Substitute these values into equation (iv) as follows;

R₂ = \frac{12.0^{2} }{4}

R₂ = \frac{144}{4}

R₂ = 36Ω

Now, since the bulbs are connected in parallel, the effective resistance (Rₓ) is given by;

\frac{1}{R_{X} } = \frac{1}{R_1} + \frac{1}{R_2}       -----------------(v)

Substitute the values of R₁ and R₂ into equation (v) as follows;

\frac{1}{R_X} = \frac{1}{36} + \frac{1}{36}

\frac{1}{R_X} = \frac{2}{36}

Rₓ = \frac{36}{2}

Rₓ = 18Ω

The effective resistance (Rₓ) is therefore, 18Ω

<em>Now calculate the current I, flowing in the circuit:</em>

Substitute the values of V = 11.7V and Rₓ = 18Ω into equation (b) as follows;

11.7 = I x 18

I = \frac{11.7}{18}

I = 0.65A

<em>Now calculate the battery's internal resistance:</em>

Substitute the values of E = 12.0, V = 11.7V and I = 0.65A  into equation (a) as follows;

12.0 = 11.7 + 0.65r

0.65r = 12.0 - 11.7

0.65r = 0.3

r = \frac{0.3}{0.65}

r = 0.46Ω

Therefore, the internal resistance of the battery is 0.46Ω

5 0
4 years ago
Read 2 more answers
The three components of velocity in a velocity field are given by u = Ax + By + Cz, v = Dx + Ey + Fz, and w = Gx + Hy + Jz. Dete
Alexxandr [17]

Answer:

The relationship is only between the coefficients A, E and J which is:

A + E + J = 0. The remaining coefficients can be anything without any constraints.

Explanation:

Given:

The three components of velocity is a velocity field are given as:

u = Ax + By + Cz\\\\v = Dx + Ey + Fz\\\\w = Gx + Hy + Jz

The fluid is incompressible.

We know that, for an incompressible fluid flow, the sum of the partial derivatives of each component relative to its direction is always 0. Therefore,

\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0

Now, let us find the partial derivative of each component.

\frac{\partial u}{\partial x}=\frac{\partial }{\partial x}(Ax+By+Cz)\\\\\frac{\partial u}{\partial x}=A+0+0=A\\\\\frac{\partial v}{\partial y}=\frac{\partial }{\partial y}(Dx+Ey+Fz)\\\\\frac{\partial v}{\partial y}=0+E+0=E\\\\\frac{\partial w}{\partial z}=\frac{\partial }{\partial z}(Gx+Hy+Jz)\\\\\frac{\partial w}{\partial z}=0+0+J=J

Hence, the relationship between the coefficients is:

A+E+J=0

There is no such constraints on other coefficients. So, we can choose any value for the remaining coefficients B, C, D, F, G and H.

6 0
3 years ago
Other questions:
  • What do astronomers call a system that is composed of more than two stars
    15·1 answer
  • How much force must a locomotive exert on a 12840-kg boxcar to make it accelerate forward at 0.490 m/s2?
    14·1 answer
  • Which of the following microscope parts should routinely be adjusted to control the light source and provide optimal illuminatio
    9·1 answer
  • A person rides a Ferris wheel that turns with constant angular velocity. Her weight is 549.0 N. At the top of the ride her appar
    5·1 answer
  • If they are going the same speed, a baseball will have less momentum than a bowling ball t or f
    14·1 answer
  • What is the most likely elevation of point B?<br>a. 150 ft<br>b. 200 ft<br>c. 125 ft<br>d. 225 ft​
    5·2 answers
  • You are standing on a sheet of ice that covers the football stadium parking lot in Buffalo; there is negligible friction between
    6·1 answer
  • The work-energy theorem states that a force acting on a particle as it moves over a ______ changes the ______ energy of the part
    8·1 answer
  • A cat with a mass of 5.00 kg pushes on a 25.0 kg desk with a force of 50.0N to jump off. What is the force on the desk?
    7·1 answer
  • 10. Complete each of the following radioactive decay equations.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!