Answer:
c.
Explanation:
Initial velocity of cheetah,u=1 m/s
Time taken by cheetah =4.8 s
Final velocity of cheetah,v=28 m/s
We have to find the acceleration of this cheetah.
We know that
Acceleration,
Where v=Final velocity of object
u=Initial velocity of object
t=Time taken by object
Using the formula
Then, we get
Acceleration, a=
Acceleration=
Hence, the acceleration of cheetah=
Please find attached photograph for your answer. Hope it helps. Please do comment
Answer:

Explanation:
<u>Diagonal Launch
</u>
It's referred to as a situation where an object is thrown in free air forming an angle with the horizontal. The object then describes a known path called a parabola, where there are x and y components of the speed, displacement, and acceleration.
The object will eventually reach its maximum height (apex) and then it will return to the height from which it was launched. The equation for the height at any time t is


Where vo is the magnitude of the initial velocity,
is the angle, t is the time and g is the acceleration of gravity
The maximum height the object can reach can be computed as

There are two times where the value of y is
when t=0 (at launching time) and when it goes back to the same level. We need to find that time t by making 

Removing
and dividing by t (t different of zero)

Then we find the total flight as

We can easily note the total time (hang time) is twice the maximum (apex) time, so the required time is

Answer:
Option B
Explanation:
Magnification of Microscope is

Mo= Magnification of objective lens and
Me= magnification of the eyepiece.
Both magnifications( of objective and eyepiece) are inversely proportional to the focal length.
Magnification,

when the focal length is less magnification will be high and when the magnification is the low focal length of the microscope will be more.
Thus. Magnification will increase by decreasing the focal length.
The correct answer is Option B i.e. using shorter focal length