Answer: the value of 7x-y is -14.
Step-by-step explanation:
When x=2 and y=4,
To find the value of 7x - y when x =2, y = 4, this means when ever you see x, put 2 in replacement, y, put 4 respectively.
7x - y = 7(2 - 4)
14 - 28
= -14.
<span>For the plane, we have z = 5x + 9y
For the region, we first find its boundary curves' points of intersection.
x = x^4 ==> x = 0, 1.
Since x > x^4 for y in [0, 1],
The volume of the solid equals
![\int\limits^1_0 { \int\limits_{x^4}^x {(5x+9y)} \, dy } \, dx = \int\limits^1_0 {\left[5xy+ \frac{9}{2} y^2\right]_{x^4}^{x}} \, dx \\ \\ =\int\limits^1_0 {\left[\left(5x(x)+ \frac{9}{2} (x)^2\right)-\left(5x(x^4)+ \frac{9}{2} (x^4)^2\right)\right]} \, dx \\ \\ =\int\limits^1_0 {\left(5x^2+ \frac{9}{2} x^2-5x^5- \frac{9}{2} x^8\right)} \, dx =\int\limits^1_0 {\left( \frac{19}{2} x^2-5x^5- \frac{9}{2} x^8\right)} \, dx \\ \\ =\left[ \frac{19}{6} x^3- \frac{5}{6} x^6- \frac{1}{2} x^9\right]^1_0](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E1_0%20%7B%20%5Cint%5Climits_%7Bx%5E4%7D%5Ex%20%7B%285x%2B9y%29%7D%20%5C%2C%20dy%20%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5E1_0%20%7B%5Cleft%5B5xy%2B%20%5Cfrac%7B9%7D%7B2%7D%20y%5E2%5Cright%5D_%7Bx%5E4%7D%5E%7Bx%7D%7D%20%5C%2C%20dx%20%20%5C%5C%20%20%5C%5C%20%3D%5Cint%5Climits%5E1_0%20%7B%5Cleft%5B%5Cleft%285x%28x%29%2B%20%5Cfrac%7B9%7D%7B2%7D%20%28x%29%5E2%5Cright%29-%5Cleft%285x%28x%5E4%29%2B%20%5Cfrac%7B9%7D%7B2%7D%20%28x%5E4%29%5E2%5Cright%29%5Cright%5D%7D%20%5C%2C%20dx%20%20%5C%5C%20%20%5C%5C%20%3D%5Cint%5Climits%5E1_0%20%7B%5Cleft%285x%5E2%2B%20%5Cfrac%7B9%7D%7B2%7D%20x%5E2-5x%5E5-%20%5Cfrac%7B9%7D%7B2%7D%20x%5E8%5Cright%29%7D%20%5C%2C%20dx%20%3D%5Cint%5Climits%5E1_0%20%7B%5Cleft%28%20%5Cfrac%7B19%7D%7B2%7D%20x%5E2-5x%5E5-%20%5Cfrac%7B9%7D%7B2%7D%20x%5E8%5Cright%29%7D%20%5C%2C%20dx%20%5C%5C%20%20%5C%5C%20%3D%5Cleft%5B%20%5Cfrac%7B19%7D%7B6%7D%20x%5E3-%20%5Cfrac%7B5%7D%7B6%7D%20x%5E6-%20%5Cfrac%7B1%7D%7B2%7D%20x%5E9%5Cright%5D%5E1_0)

</span>
Answer: It is 120 im pretty sure it is
Step-by-step explanation:
PLZ Give Me Brainlist
It is certainly possible for a function decreasing over a certain interval to be negative, but no rule that says it must be. On the other hand, where the function is decreasing, the rate of change of the function must be negative.
Answer:
i think -11
Step-by-step explanation: