Answer:
The answer for the first equation is,
B. 11
The answer for the second equation is,
D.none of these.
<u>Correct</u><u> </u><u>question</u><u>:</u><u>-</u>
<u>Prove </u><u>that </u><u>tan9.</u><u>t</u><u>a</u><u>n</u><u>1</u><u>7</u><u>.</u><u>t</u><u>a</u><u>n</u><u>4</u><u>5</u><u>.</u><u>t</u><u>a</u><u>n</u><u>7</u><u>3</u><u>.</u><u>t</u><u>a</u><u>n</u><u>8</u><u>1</u><u>=</u><u>1</u>
<u>LHS</u>






What's the question? what's the question?
Answer:

And solving we got:

And we can reorder the terms we got:

And that would be the equivalent expression for the problem
Step-by-step explanation:
For this case we have the following function given:

And we can complete the square adding the middle of 14 squared and subtracted before like this:

And solving we got:

And we can reorder the terms we got:

And that would be the equivalent expression for the problem
Answer:
Let us make the last unknown interior angle be "b"
b+a+36=180
b=180-36-a
b=144-a
for the main triangle,
a+144-a+a-28=180
2a+116=180
2a=180-116
2a=64
a=32
so a=32