Answer:
66.48% of full-term babies are between 19 and 21 inches long at birth
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean length of 20.5 inches and a standard deviation of 0.90 inches.
This means that 
What percentage of full-term babies are between 19 and 21 inches long at birth?
The proportion is the p-value of Z when X = 21 subtracted by the p-value of Z when X = 19. Then
X = 21



has a p-value of 0.7123
X = 19



has a p-value of 0.0475
0.7123 - 0.0475 = 0.6648
0.6648*100% = 66.48%
66.48% of full-term babies are between 19 and 21 inches long at birth
y=-1/2x-4
I could be wrong. Not my strong subject.
-Seth
Answer:
120
Step-by-step explanation:
2 of every 5 trees are pine trees.
2/5 · 300 = 120
120 pine trees are going to be planted in the park.
Answer:
G) -12
Step-by-step explanation:
x is increasing by 2
y is decreasing by 24
-24 / 2 = -12
*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆
Answer: A= 1 b= -8 c= -20
Explanation:
I hope this helped!
<!> Brainliest is appreciated! <!>
- Zack Slocum
*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆