It is A and B I think hope it helps
Answer:
a. P(x = 0 | λ = 1.2) = 0.301
b. P(x ≥ 8 | λ = 1.2) = 0.000
c. P(x > 5 | λ = 1.2) = 0.002
Step-by-step explanation:
If the number of defects per carton is Poisson distributed, with parameter 1.2 pens/carton, we can model the probability of k defects as:

a. What is the probability of selecting a carton and finding no defective pens?
This happens for k=0, so the probability is:

b. What is the probability of finding eight or more defective pens in a carton?
This can be calculated as one minus the probablity of having 7 or less defective pens.



c. Suppose a purchaser of these pens will quit buying from the company if a carton contains more than five defective pens. What is the probability that a carton contains more than five defective pens?
We can calculate this as we did the previous question, but for k=5.

Answer:
495
Step-by-step explanation:
This problem can be solved b using a combination. We're using a combination for this because the order in which you would pick the books doesn't matter. To solve, we would plug in the number of books, in this case 12, into the n value of the combination. Then we would plug in the number of books that would be picked, in this case 4, into the r value of the combination. Solve the combination, and you get 495.
Like wat is it like i need was you need to show me your Question so i know what you talking about