1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
2 years ago
11

The length of a rectangle is 4yd longer than its width. If the perimeter of the rectangle is 36yd, find its area

Mathematics
1 answer:
kicyunya [14]2 years ago
3 0

Answer:

\boxed{\sf Area \ of \ the \ rectangle = 91 \ yd^{2}}

Given:

Length of the rectangle = 4 yd longer than its width

Perimeter of the rectangle = 36 yd

To Find:

Area of the rectangle

Step-by-step explanation:

Let the width of the rectangle be 'w' yd

So,

Length of the rectangle = (w + 4) yd

\therefore \\  \sf \implies Perimeter \:  of \:  the \:  rectangle = 2(Length + Width) \\  \\  \sf \implies 36 = 2((4 + w) + w) \\  \\  \sf \implies 36 = 2(4 + w + w) \\  \\  \sf \implies 36 = 2(4 + 2w) \\  \\  \sf 36 =2(2w+4) \:  is \:  equivalent  \: to \:  2(2w + 4) = 36: \\  \sf \implies 2(2w + 4) = 36  \\  \\ \sf Divide \:  both  \: sides \:  of  \: 2 (2w + 4) = 36 \:  by \:  2:  \\ \sf \implies 2w + 4 = 18 \\  \\  \sf Subtract  \: 4  \: from \:  both  \: sides: \\  \sf \implies 2w = 14 \\  \\  \sf Divide \:  both  \: sides  \: of  \: 2w = 14 \:  by \:  2: \\  \sf \implies w = 7

So,

Width of the rectangle = 7 yd

Length of the rectangle = (7 + 4) yd

= 13 yd

\therefore \\  \sf Area \ of \ the \ rectangle = Length \times Width   \\  \\ \sf = 7 \times 13 \\  \\  \sf = 91 \:  {yd}^{2}

You might be interested in
Pls help me #7thgrademath
melamori03 [73]

ovovovovovovovovoovovoovovovovovovoovovovo

6 0
3 years ago
Read 2 more answers
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Abag contains 2 Snicker
alekssr [168]

Answer: the probability will be 3 because 8-5=3 and there was 8 trix bars and 5 crunch bars and which means it will be 3

Step-by-step explanation:

3 0
3 years ago
What's 6 to the power of 900?​
zheka24 [161]

Answer:

5400

Step-by-step explanation:

6x900 =5400 this is the correct answer

4 0
3 years ago
Read 2 more answers
I need help with 1-2 and 4-6!!!
serious [3.7K]

Answer:


1. y = 1/4 and y = 1/4x+2

2. y - 1 = -x (x + 7) and y = -x and x + y = 3

-------

4. y = 3 and x = 6

5. y = 1/2x + 2  and y + 1 =  -2x

6. Slope of <u>AB</u> = 2/3

Slope of BC = -3/2

AB is perpendicular to BC because 2/3(-2/3) = -1

ABC is a right triangle because it contains a right angle


4 0
3 years ago
Other questions:
  • 13 is the same as 1÷3. <br> What is the exact quotient in decimal form of 1÷3?
    15·2 answers
  • PLS HELP ME !! MARKING BRAINLIST IF CORRECT!! :) HELP WITH BOTH PROBLEMS
    15·1 answer
  • We would like to create a confidence interval.
    11·1 answer
  • Given f(x) = x2 - 2x + 3, find the value(s) for x such that f(x) = 18. The solution set is o​
    13·2 answers
  • PLEASE HELP!!! WILL REWARD BRAINLIEST!!!
    15·1 answer
  • Andrew walks along a road which can be modeled by the equation y=3x, where (0,0) represents his starting point. When he reaches
    11·1 answer
  • 48 times 10to the 4th
    7·2 answers
  • Becca and Kimberly are running at a constant speed in a marathon. Becca runs at 4.5 miles per hour. Kimberly’s progress is shown
    10·1 answer
  • I need help *********
    13·2 answers
  • According to Hinduism, people are reborn into new physical forms. The form one is born into depends on one’s
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!