Part A)
Recall that:
1) The function represented by the graph of the function f(x) translated vertically n units up and horizontally m units left is:

2) The function represented by the graph of the function f(x) reflected over the x-axis is:

Now, notice that g(x) is the function f(x) reflected over the x-axis and then translated vertically 6 units up and horizontally 4 units left.
Answer Part A:
Options B, C, and D.
Part B) To graph g(x) we will reflect the graph of f(x) over the x-axis and then we will translate it vertically 6 units up and horizontally 4 units left.
We know that the graph of f(x)=|x| is:
The above graph reflected over the x-axis is:
Finally, the above graph translated vertically 6 units up and horizontally 4 units left is:
Answer part B:
Simply 4/6 to its equivalent fraction of 2/3
Is 1/3 of a cup enough for the 2/3 a cup needed? No. So he doesn't have enough
Answer:
a = 3
Step-by-step explanation:
Answer:7.87402
Step-by-step explanation: please leave a thx! :)
Answer:
You didn't add a specific time frame so I can you a correct answer.
Explanation:
⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣤⣄⠄⡀⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣴⣿⣿⣿⣿⣷⡒⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⡀⣹⣿⣿⣿⣿⣿⣯⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣀⣀⣴⣿⣿⣿⣿⣿⣿⠿⠋⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⢀⣀⣤⣶⣾⠿⠿⠿⠿⣿⣿⣿⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⠄⠄ ⠄⡶⣶⡿⠛⠛⠉⠉⠄⠄⠄⠄⢸⣿⣿⣿⣿⣿⣿⣿⠃⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠘⠃⠄⠄⠄⠄⠄⠄⠄⠄⢠⣿⣿⣿⣿⣿⡟⠁⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⣤⣾⣷⣿⣿⣿⣿⡏⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⢀⣠⣴⣾⣿⣿⣿⣿⣿⣿⣿⣿⠂⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⢀⣤⣴⣾⣿⣿⣿⣿⡿⠛⠻⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠸⣿⣿⣿⣿⠋⠉⠄⠄⠄⠄⣼⣿⣿⡿⠇⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠈⠻⣿⣿⣆⠄⠄⠄⠄⠄⣿⣿⣿⣷⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠻⣿⣿⣆⡀⠄⠄⠈⠻⣿⣿⣿⣦⡄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⣀⣌⣿⣿⣿⣦⡄⠄⠄⠄⠙⠻⣿⣿⣦⣀⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠈⠉⠉⠉⠉⠉⠁⠄⠄⠄⠄⠄⠄⠄⠘⠻⣿⢿⢖⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠉⠉⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⢠⣴⣧⣤⣴⡖⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⣰⣿⣿⣿⣿⣿⣷⣀⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣿⣿⣷⣶⡄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠈⠘⠻⢿⣿⣿⣿⣿⣿⣿⣿⣆⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣰⣿⣿⣿⣿⣿⣿⣿⣿⣿⡆⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⢤⣴⣦⣄⣀⣀⣴⣿⡟⢿⣿⡿⣿⣿⣿⣿⣿⣿⡄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠉⠉⠙⠻⠿⣿⡿⠋⠄⠈⢀⣀⣠⣾⣿⣿⣿⣿⣿⡄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣇⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⢀⣠⣴⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡏⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⠉⠋⠉⠉⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠈⠛⠛⣿⣿⣿⣿⣿⣿⣇⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⢀⣠⣶⣿⣿⠿⢛⣿⣿⣿⣿⣷⣤⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⣶⣷⣿⣿⡉⠄⠄⠄⠄⠉⠉⠉⠉⠉⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠘⠛⠟⢿⣤⣤⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⠄⣠⣶⣶⣷⣿⣶⡊⠄⠄⣀⣤⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⣀⣴⣶⣾⢿⣿⣿⣿⣿⣿⣿⣿⣿⣶⣿⣿⡏⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⢸⣿⡍⠁⠄⠈⢿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣼⣿⣿⣿⣿⣿⣿⣿⠏⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣿⡿⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢸⣿⣿⣿⣿⣿⡿⠋⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠈⠻⣿⣿⣿⣿⣡⣶⣶⣄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⣀⣀⣠⣴⣦⡤⣿⣿⣿⣿⡻⣿⣿⡯⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣷⣿⣿⣿⣿⣿⣿⡟⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⢻⣿⣿⡏⠉⠙⠛⢛⣿⣿⣿⣿⠟⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⢿⣿⡧⠄⠄⢠⣾⣿⣿⡿⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠈⣿⣿⣄⣼⣿⣿⣿⠏⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠸⡿⣻⣿⣿⣿⣿⣆⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⣻⠟⠈⠻⢿⣿⣿⣆⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠿⠍⠄⠄⠄⠄⠉⠻⣿⣷⡤⣀⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠈⢻⣿⡿⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⡯⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠸⠃⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣠⣶⣶⣤⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣾⣿⣿⣿⣿⣿⡞⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⡿⢃⡀⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠘⢿⣿⣿⣿⣿⣿⣿⣿⣧⡀⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢈⣽⣿⣿⣿⣿⣿⣿⣿⢿⣷⣦⣀⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣸⣿⣿⣿⣿⣿⣿⣿⣿⠄⢉⣻⣿⡇⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢠⣿⣿⡉⣀⣿⣿⣿⣿⣋⣴⣿⠟⠋⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⣠⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣏⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⢀⣀⣼⣿⣿⣿⣿⣿⣿⠿⢿⣿⣿⣿⣿⣿⣮⡠⠄⠄⠄⠄ ⠄⠄⠄⠄⢰⣾⣿⣿⡿⠿⠛⠛⠛⠉⠄⠄⠄⠄⠙⠻⢿⣿⣿⣿⣶⣆⡀⠄ ⠄⠄⠄⠄⠄⠹⣿⣿⣦⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢉⣿⣿⣿⣿⣿⠂ ⠄⠄⠄⠄⠄⠄⠈⢿⣿⣇⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣴⣾⣿⡿⠟⠉⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠂⢿⣿⣥⡄⠄⠄⠄⠄⢀⣠⣶⣿⣿⠟⠋⠁⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⣀⣤⣾⣿⣿⣷⣿⣃⡀⢴⣿⣿⡿⣿⣍⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠈⠉⠉⠉⠉⠉⠉⠉⠄⠄⠄⠉⠙⠛⠛⠛⠛⠂⠄⠄⠄⠄⠄