Answer:
He can put 6 pages with 6 cards or he can put 12 pages with 3 cards.
He could also do 1 page with 6 and 10 pages with 3.
1km=1000metres
15km=15000 metres
15000/600=25
25-1=24 (minus the last one)
hope this helps :)
Answer:
x - 2y = - 3
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Given 2x + y = 3 ( subtract 2x from both sides )
y = - 2x + 3 ← in slope- intercept form
with slope m = - 2
Given a line with slope m then the slope of a line perpendicular to it is
= -
= -
=
, thus
y =
x + c ← is the partial equation
To find c substitute (5, 4) into the partial equation
4 =
+ c ⇒ c = 
y =
x +
← in slope- intercept form
Multiply through by 2
2y = x + 3 ( subtract 2y from both sides )
0 = x - 2y + 3 ( subtract 3 from both sides )
- 3 = x - 2y , that is
x - 2y = - 3 ← in standard form
I already answered this question, if you look back in your questions you should find this answered along with another one. I'll do it again just in case you don't find it.
Answer:
{y,x} = {-4,-2}
Expanation:
Solve by Substitution :
// Solve equation [1] for the variable y
[1] y = 2x
// Plug this in for variable y in equation [2]
[2] -2•(2x) - 8x = 24
[2] - 12x = 24
// Solve equation [2] for the variable x
[2] 12x = - 24
[2] x = - 2
// By now we know this much :
y = 2x
x = -2
// Use the x value to solve for y
y = 2(-2) = -4
Answer:
La cantidad inicial que tenía la madre de Rosita antes, comprando los artículos es de $13.90
Step-by-step explanation:
La información dada son;
El valor de la máscara = $ 1.25
El valor del paquete de jabones = $ 2.00
El valor del gel de alcohol = $ 3.00
La cantidad que le quedaba después de pagar = $ 7.65
Por lo tanto, tenemos;
La cantidad inicial que tenía la madre de Rosita antes, comprando los artículos = La cantidad que le quedaba después de pagar + El valor del gel de alcohol + El valor del paquete de jabones + El valor de la mascarilla
Por lo tanto;
La cantidad inicial que tenía la madre de Rosita antes, comprando los artículos = $ 7.65 + $ 3.00 + $ 2.00 + $ 1.25 = $ 13.90.