A geometric series is the collection of an unlimited number of terms with a fixed ratio between them. The missing value in the table below is 343. The correct option is A.
<h3>What is geometrical series?</h3>
A geometric series is the collection of an unlimited number of terms with a fixed ratio between them.
The given table if closely observed forms a geometric progression, this is because the value of the dependent variable, y is increasing by a common ratio. The common ratio in the table is,
Common ratio = y₂/y₁ = 1/(1/7) = 7
Now, for any geometric progression, the value of the nth term is given as,
Tₙ = a₁ (r)⁽ⁿ⁻¹⁾
where a₁ is the first term of the geometric progression and r is the common ratio. Therefore, the nth term of the series is,
T = a₁ (r)⁽ⁿ⁻¹⁾
Tₙ = (1/7) (7)⁽ⁿ⁻¹⁾
y = (1/7)(7)⁽ˣ⁻¹⁾
Now, the value of the y when the value of x is 5 is,
y = (1/7)(7)⁽ˣ⁻¹⁾
y = (1/7)(7)⁽⁵⁻¹⁾
y = (1/7)(7)⁴
y = (1/7) × 2401
y = 343
Hence, the missing value in the table below is 343.
Learn more about Geometrical Series here:
brainly.com/question/4617980
#SPJ1
The function would be the initial plus growth rate * # years
So: f(x) = 9.05 + 0.031(7)
Where x= # years
If John has $0.75 and he needs $2.50, then you will subtract $0.75 from $2.50 to find out how much he needs which is $1.75. Hope I helped! Don't forget to help me with the Brainliest Answer! :D
You'll need to give a bit more information for the question to be answered. You can only calculate the percentage of error if you know what the mass of the substance *should be* and what you've *measured* it to be.
In other words, if a substance has a mass of 0.55 grams and you measure it to be 0.80 grams, then the percent of error would be:
percent of error = { | measured value - actual value | / actual value } x 100%
So, in this case:
percent of error = { | 0.80 - 0.55 | / 0.55 } x 100%
percent of error = { | 0.25 | / 0.55 } x 100%
percent of error = 0.4545 x 100%
percent of error = 45.45%
So, in order to calculate the percent of error, you'll need to know what these two measurements are. Once you know these, plug them into the formula above and you should be all set!