1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mart [117]
4 years ago
13

A number cube has the numbers 1-6 written on its sides, the number cube is rolled 300 times. Which of the following would you pr

edict to happen? Select all that apply: A) A 4 would be rolled about 50 times. B) 6 would be rolled about 50 times. C) A 3 would be rolled about 20 times. D) The result would be an even number about 50 times. E) The result would be an even number about 150 times. F) The result would be greater than 3 about 150 times.​
Mathematics
1 answer:
Sergeeva-Olga [200]4 years ago
3 0

Answer:

I am not sure i am sorry though this is noton my leavel

Step-by-step explanation:

Not on my leavel if this is helpful let me know with a heat

You might be interested in
Use the Pohlig–Hellman algorithm (Theorem 2.32) to solve the discrete logarithm problem gx = a in Fp in each of the following ca
qaws [65]

Answer:

(a) The solution is x=47.

(b) The solution is x=223755.

(c) The solution is x=33703314.

(d) The solution is x=984414.

Step-by-step explanation:

(a) Step 1 is to solve  

             

q    e        h = g^{ (p-1)} /q     b = a^{(p-1)} /q     h^{y} = b

2   4        265                   250                 Calculation I

3   3       374                    335                  Calculation II

Now Solving for calculation I:

x≡x_{0} +x_{1} q+…+x_{e-1} q^{e-1} (mod\ 2^{4} )≡0x_{0}+2x_{1} +4x_{2} +8x_{3} (mod\ 2^{4} )

Solve (265)x=250(mod 433) for x0,x1,x2,x3.

x0:(26523)x0=25023(mod 433)⟹(432)x0=432⟹x0=1

x1:(26523)x1=(250×265−x0)22(mod 433)=(250×265−1)22(mod433)=(250×250)22(mod 433)⟹(432)x1=432⟹x1=1

x2:(26523)x2=(250×265−x0−2x1)21(mod 433)=(250×265−3)22(mod 433)=(250×195)21(mod 433)⟹(432)x2=432⟹x2=1

x3:(26523)x3=(250×265−x0−2x1−4x2)20(mod 433)=(250×265−7)20(mod 433)=(250×168)20(mod 433)⟹(432)x3=432⟹x3=1

Thus, our first result is:

        x≡x0+2x1+4x2+8x3(mod24)≡1+2+4+8(mod24)≡15(mod24)

Now for Calculation II:

        x≡x_{0} +x_{1} q+…+x_{e-1} q^{e-1} (mod\ 3^{3} )≡ x_{0}*0+3x_{1} +9x_{2}  (mod3^{3})

 

Solve (374)x=335(mod 433) for x0,x1,x2.

x0:(37432)x0=33532(mod 433)⟹(234)x0=198⟹x0=2. Note: you only needed to test x0=0,1,2, so it is clear which one x0 is.

x1:(37432)x1=(335×374−x0)31(mod 433)=(335×374−2)31(mod 433)=(335×51)31(mod 433)=1(mod 433)⟹(234)x1=1(mod 433)⟹x1=0

x2:(37432)x2=(335×374−x0−3x1)30(mod 433)=(335×374−2)30(mod 433)=(335×51)30(mod 433)=198(mod 433)⟹(234)x2=198(mod 433)⟹x2=2. Note: you only needed to test x2=0,1,2, so it is clear which one x2 is.

Thus, our second result is:

           x≡x0+3x1+9x2(mod 33)≡2+0+9×2(mod 33)≡20(mod 33)

Step 2 is to solve

x ≡15 (mod 24 ),

x ≡20 (mod 33 ).

The solution is x=47.

(b) Step 1 is to solve

q       e              h = g^{ (p-1)} /q     b = a^{(p-1)} /q        h^{y} = b

2       10            4168                   38277              523

3        6              674719               322735           681  

h^{y} = b is calculated using same steps as in part(a).

Step 2 is to solve

x ≡ 523 (mod 210 ),

x ≡ 681 (mod 36 ).

The solution is x=223755 .

(c) Step 1 is to solve

q             e         h = g^{ (p-1)} /q     b = a^{(p-1)} /q                h^{y} = b

2             1         41022298               1                             0

29           5        4                              11844727              13192165

 

In order to solve the discrete logarithm problem modulo 295 , it is best to solve  it step by step. Note that 429 = 18794375 is an element of order 29 in F∗p . To  avoid notational confusion, we use the letter u for the exponents.

¢294

First solve 18794375u0 = 11844727

                                        = 987085.

The solution is u0 = 7.

The value of u so far is u = 7.

¢293

Solve 18794375u1 = 11844727·4−7

                               = 8303208.

The solution is u1 = 8.

The value of u so far is u = 239 = 7 + 8 · 29.

¢292

Solve 18794375u2 = 11844727 · 4−239

                                = 30789520.

The solution is

u2 = 26. The value of u so far is u = 22105 = 7 + 8 · 29 + 26 · 292 .

¢291

Solve 18794375u3 = 11844727 · 4−22105

                               = 585477.

The solution is

u3 = 18. The value of u so far is u = 461107 = 7 + 8 · 29 + 26 · 292 + 18 · 293 .

¢290

Solve 18794375u4 = 11844727 · 4−461107

                                = 585477.

The solution is

u4 = 18. The final value of u is u = 13192165 = 7 + 8 · 29 + 26 · 292 + 18 · 293 +  18 · 294 , which is the number you see in the last column of the table.

 

Step 2 is to solve

x ≡ 13192165 (mod 295 ).

x ≡ 0 (mod 2),

The solution is x=33703314 .

(d) Step 1 is to solve

q               e        h = g^{ (p-1)} /q     b = a^{(p-1)} /q     h^{y} = b

2               1           1291798           1                       0

709           1          679773             566657           322

911             1          329472            898549           534

To solve the DLP’s modulo 709 or 911, they can be easily solved by an exhaustive search on a computer, and a collision  algorithm is even faster.

Step 2 is to solve

x ≡ 0 (mod 2),

x ≡ 322 (mod 709),

x ≡ 534 (mod 911).

The solution is x=984414

3 0
3 years ago
ANSWER FOR EXTRA POINTS ⭐️⭐️⭐️
GREYUIT [131]
It should be b) from my recollection.
3 0
3 years ago
Read 2 more answers
Complete the data table for the function f(x) = -x - 2 + 2.
alexgriva [62]

Given the following function:

\text{ f(x) = }\sqrt[]{-x\text{ -2}}\text{ + 2}

y = f(x)

Therefore, let's complete the data table by substituting each x-values to be able to get the respective y-values,

We get,

At x = -2,

\text{ y = f(x) = }\sqrt[]{-x-2}\text{ + 2}\text{f(-2) = }\sqrt[]{-(-2)-2}\text{ + 2}\text{ = }\sqrt[]{2\text{ - 2}}\text{ + 2}\text{ = }\sqrt[]{0}\text{ + 2}\text{ y = f(-2) = 2}

Therefore, y = 2 at x = -2.

At x = -3,

\text{ y = f(x) = }\sqrt[]{-x-2}\text{ + 2}\text{f(-3) = }\sqrt[]{-(-3)-2}\text{ + 2}\text{= }\sqrt[]{3-2}\text{ + 2}\text{= }\sqrt[]{1}\text{ + 2}\text{= }1\text{ + 2}\text{ f(-3) = 3}

Therefore, y = 3 at x = -3.

At x = -6,

8 0
1 year ago
Sandra picked 12 strawberries in 8 minutes which variable is independent
katovenus [111]
The minutes because it does not matter how many minutes you have

5 0
4 years ago
Read 2 more answers
Is 9.6022 less than equal to or greater than 5.298
cupoosta [38]
9.6022 is greater than 5.298, because if you look in the front, 9 is bigger than 5. Hope I helped =D
5 0
3 years ago
Read 2 more answers
Other questions:
  • Can someone please help me
    8·1 answer
  • The amount of money the banker or broker makes in commission on your loan is called the_____. Down payment, interest, yield spre
    10·1 answer
  • The area of the triangle above will equal one half of a rectangle that is 5 units long and units wide. (Input only whole numbers
    14·1 answer
  • Please help it’s due in an hour
    8·1 answer
  • Please help me asap ​
    9·1 answer
  • Identify the correct phrase to complete the statement.
    5·1 answer
  • Someone help please!!
    11·1 answer
  • Help mee !! I’ll give points !!
    7·1 answer
  • What is the degree of the polynomial <img src="https://tex.z-dn.net/?f=4x%5E%7B5%7D%2B3x%5E%7B4%7D" id="TexFormula1" title="4x^{
    12·1 answer
  • Select the graphs that have an equation with a &lt;<br> 0.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!