![\bf ~~~~~~\textit{parabola vertex form} \\\\ \begin{array}{llll} \stackrel{\textit{we'll use this one}}{y=a(x- h)^2+ k}\\\\ x=a(y- k)^2+ h \end{array} \qquad\qquad vertex~~(\stackrel{2}{ h},\stackrel{-1}{ k}) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=2\\ k=-1 \end{cases}\implies y=a(x-2)^2-1 \\\\\\ \textit{we also know that } \begin{cases} y=0\\ x=5 \end{cases}\implies 0=a(5-2)^2-1\implies 1=9a \\\\\\ \cfrac{1}{9}=a\qquad therefore\qquad \boxed{y=\cfrac{1}{9}(x-2)^2-1}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Bparabola%20vertex%20form%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20%5Cstackrel%7B%5Ctextit%7Bwe%27ll%20use%20this%20one%7D%7D%7By%3Da%28x-%20h%29%5E2%2B%20k%7D%5C%5C%5C%5C%20x%3Da%28y-%20k%29%5E2%2B%20h%20%5Cend%7Barray%7D%20%5Cqquad%5Cqquad%20vertex~~%28%5Cstackrel%7B2%7D%7B%20h%7D%2C%5Cstackrel%7B-1%7D%7B%20k%7D%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20h%3D2%5C%5C%20k%3D-1%20%5Cend%7Bcases%7D%5Cimplies%20y%3Da%28x-2%29%5E2-1%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Bwe%20also%20know%20that%20%7D%20%5Cbegin%7Bcases%7D%20y%3D0%5C%5C%20x%3D5%20%5Cend%7Bcases%7D%5Cimplies%200%3Da%285-2%29%5E2-1%5Cimplies%201%3D9a%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B1%7D%7B9%7D%3Da%5Cqquad%20therefore%5Cqquad%20%5Cboxed%7By%3D%5Ccfrac%7B1%7D%7B9%7D%28x-2%29%5E2-1%7D)
now, let's expand the squared term to get the standard form of the quadratic.

Answer:
The value is 
Step-by-step explanation:
From the question we are told that
The population proportion is 
The sample size is n = 563
Generally the population mean of the sampling distribution is mathematically represented as

Generally the standard deviation of the sampling distribution is mathematically evaluated as

=>
=>
Generally the probability that the proportion of persons with a college degree will differ from the population proportion by less than 5% is mathematically represented as

Here
is the sample proportion of persons with a college degree.
So
![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P(\frac{[[0.05 -0.52]]- 0.52}{0.02106} < \frac{[\^p - p] - p}{\sigma } < \frac{[[0.05 -0.52]] + 0.52}{0.02106} )](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%28%5Cfrac%7B%5B%5B0.05%20-0.52%5D%5D-%200.52%7D%7B0.02106%7D%20%3C%20%5Cfrac%7B%5B%5C%5Ep%20-%20p%5D%20-%20p%7D%7B%5Csigma%20%7D%20%20%3C%20%5Cfrac%7B%5B%5B0.05%20-0.52%5D%5D%20%2B%200.52%7D%7B0.02106%7D%20%29)
Here
![\frac{[\^p - p] - p}{\sigma } = Z (The\ standardized \ value \ of\ (\^ p - p))](https://tex.z-dn.net/?f=%5Cfrac%7B%5B%5C%5Ep%20-%20p%5D%20-%20p%7D%7B%5Csigma%20%7D%20%20%3D%20Z%20%28The%5C%20standardized%20%5C%20%20value%20%5C%20%20of%5C%20%20%28%5C%5E%20p%20-%20p%29%29)
=> ![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P[\frac{-0.47 - 0.52}{0.02106 } < Z < \frac{-0.47 + 0.52}{0.02106 }]](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%5B%5Cfrac%7B-0.47%20-%200.52%7D%7B0.02106%20%7D%20%20%3C%20%20Z%20%20%3C%20%5Cfrac%7B-0.47%20%2B%200.52%7D%7B0.02106%20%7D%5D)
=> ![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P[ -2.37 < Z < 2.37 ]](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%5B%20-2.37%20%3C%20%20Z%20%20%3C%202.37%20%5D)
=> 
From the z-table the probability of (Z < 2.37 ) and (Z < -2.37 ) is

and

So
=>
=>
=> 
-5/1 is the slope so the answer is -5 because you pick 2 points and use point slope formula or
y1-y2/x1-x2