Part 1: The eclipse observed was a lunar eclipse. The sun is usually not visible during these eclipses. The moon is new during a solar, but full during a lunar. It is red during a lunar eclipse due to a reflection of the Suns light behind earth. It happens more often because Earths shadow is larger than the moons. The umbra is larger as well, so it lasts longer than a solar eclipse.
Part 2: The moon is in the full moon phase. The Earth is in between the Moon and the Sun. The umbra of Earths shadow is cast directly on the moon, casting out the suns light. A tint of the reddish color shines around earth from the Sun making the dark moon appear red. The moons axis is slightly tilted , so the umbra does not hit the moon every month. But when it does? It creates a lunar eclipse.
Assuming dragon genetics follow the same rules as fruit flies, we would get the same possible genotype for all 16 offspring provided that the genes are not linked.
Considering dragon genetics, flame eyes (F) are dominant to blue eyes (f) and burbling (B) is dominant to whistling (b).
Now, a dihybrid cross between two homozygous blue-eyed, whistling dragons will yield 16 offspring all with the same possible genotype .i.e. homozygous blue-eyed, whistling type.
Morgan through experiments on fruit flies observed that when the two genes in a dihybrid cross were situated on the same chromosome, the proportion of parental gene combination were much higher than the non-parental type.
He attributed this due to the physical association or linkage of the two genes and coined the term 'linkage' to describe the physical association of genes on a chromosome. The term 'recombination' is to describe the generation of non-parental gene combination.
To learn more about dihybrid cross here
brainly.com/question/1185199
#SPJ4
I would say that it would be C, Relationships of trees to other organisms in the rain forest...
Answer:
<u>Carbon</u> and <u>nitrogen</u>.
<em>probably</em>
Hope that helped :)
A D B A C D D A C B B A D