1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Archy [21]
3 years ago
7

A TV that usually sells for $175.95 is on sale for 20% off. If sales tax on the TV is 6%, what is the price of the TV, including

tax?
Mathematics
1 answer:
shutvik [7]3 years ago
3 0
Actual cost of the TV = $175.95
Percentage of discount given on the TV = 20%
Then
Amount of discount on the TV = (20/100) * 175.95 dollars
                                                 = 175.95/5 dollars
                                                 = 35.19 dollars
So cost of the TV after discount = (175.95 - 35.19) dollars
                                                    = 140.76 dollars
Now
Percentage of sales tax that needs to be added = 6%
Then
Amount of sales tax that needs to be added = (6/100) * 140.76 dollars
                                                                       = 844.56/100 dollars
                                                                       = 8.45 dollars
Then
Price of TV after adding sales tax = (140.76 + 8.45) dollars
                                                       = 149.21 dollars
So the cost of the TV after deducting the discount and adding the sales tax is $149.21
You might be interested in
What is the slope of the line that represents this relationship?
galben [10]

Answer:

undefine

Step-by-step explanation:

the slope does not show rise over run it just sgow one of them therefore it is undefine

7 0
3 years ago
CAN SOMEONE HELP ME PLEASE? ASAP. CAN SOMEONE ANSWER THIS ASAP PLEASE? I NEED HELP!!
Sveta_85 [38]
Honestly I don’t even know what this is sorry I tried
7 0
3 years ago
Read 2 more answers
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
Using the graph below, identify 2 solutions to the inequality y&lt;-3/2x+2
lora16 [44]
Any point in that shaded area  is a solution
(0,0) is a solution
(-1,-1) is a solution
(-3,3) is a solution
etc
3 0
3 years ago
1.<br> 15% of what number is 45?
Rom4ik [11]

Answer:

15% of 300 is 45

6 0
3 years ago
Read 2 more answers
Other questions:
  • The graph of a line goes up and to the right when
    7·1 answer
  • A bag contains 5 black marbles, 9 white marbles, and 2 red marbles. One marble is to be chosen at random. What is the probabilit
    9·2 answers
  • The chart below shows the rabbit and fox populations in Boxerville over the last year. Of the choices below, in which month were
    6·2 answers
  • Annie estimates that the height of a bookcase is 78.25 in. The actual height is 75.50 in. To the nearest tenth of a percent, wha
    7·2 answers
  • Pls pls pls help. This is a a math quiz.
    8·1 answer
  • Y=x^2-2x-15. What is the vertex of the parabola?
    12·1 answer
  • Hii please help i’ll give brainliest if you give a correct answer tysm
    15·1 answer
  • 4/5(p+1)=1 wgat equals p​
    14·2 answers
  • Solve the system using the elimination method.
    6·1 answer
  • A student's tuition was $3000. A loan was obtained for 5/6 of the tuition. How much was the loan?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!