1.
where in a population:
p - the frequency of the <em>A</em> allele
q - the frequency of the <em>a</em> allele
- the frequency of the <em>AA</em> homozygous genotype
- the frequency of the <em>aa</em> homozygous genotype
2pq - the frequency of the <em>Aa</em> heterozygous genotype
A population at equilibrium will have the sum of all the alleles at the locus equal to 1.
2. Conditions:
A. The breeding population must be large
B. No natural selection
C. The mating must occur randomly
D. No mutations to cause changes in allelic frequency.
E. No changes in allelic frequency due to immigration or emigration.
3. By comparing the actual genetic structure of a population with what we would expect from a Hardy-Weinberg equilibrium, we can determine how much it deviates from the baseline provided by the mathematical model. Depending on how large the deviation is, one or more of the model's assumptions are being violated. Thus, we can attempt to determine which one.
Through analysis of ice cores, scientists learn about glacial-interglacial cycles, changing atmospheric carbon dioxide levels, and climate stability over the last 10,000 years. Many ice cores have been drilled in Antarctica.
Answer:
The reactants are the Products of Photosynthesis which is glucose and oxygen.

Explanation:
Answer:
Sorry, I'm confused there has to be more to it if there is not then there is no true way for anyone to fill in the blanks. <3