Answer: Option (d) is the correct answer.
Explanation:
Nucleus of an atom consists of protons and neutrons. Protons are positively charged and neutrons have no charge. So, due to the like charges of protons there occurs electrostatic force of repulsion inside the nucleus of the atom.
But due to similar number of neutrons and protons a force that is able to bind both of them together is known as strong nuclear binding energy.
This force is strong enough that it is able to overcome electrostatic force of repulsion. But when there is great difference in the number of protons and neutrons then binding force is not strong enough.
Hence, the atom becomes unstable and undergoes radioactive decay. So, this means weak forces are responsible for radioactive decay.
Thus, we can conclude that the statement which best describes Yanni’s error is that the strong force is responsible for radioactive decay.
Answer:
They use their antlers to fight and establish dominance.
Explanation:
Answer:
a plant that is characterized by the presence of conducting tissue.
Explanation:
Answer:
D.The light-dependent reactions absorb sunlight and transfer the energy to electrons.
Explanation:
Firstly, the organelle that was described as small green organelle inside a cell as noticed by Quinlin is the CHLOROPLAST. Chloroplast is an organelle present in the cells of green plants, in fact, it makes plants green. Chloroplast is the organelle where the unique process of PHOTOSYNTHESIS occurs in plant cells.
However, the photosynthetic process is divided into stages namely: light-dependent and light-independent stages. The light dependent stage, which involves the production of ATP (energy carrier) and NADPH (electron carrier), must PRECEDE the light independent stage or Calvin cycle. Chloroplast contains a pigment called CHLOROPHYLL, which absorbs light energy from the SUN in order to power the light dependent stage of photosynthesis.
Hence, the light-dependent reactions, which absorb sunlight and transfer the energy to electrons must occur first in the organelle.