Yes it is because none out the inputs have the same outputs
Answer:
To find the answers, all I have to do is apply the operations (plus, minus, times, and divide) that they tell me to, in the order that they tell me to.
(f + g)(x) = f (x) + g(x)
= [3x + 2] + [4 – 5x]
= 3x + 2 + 4 – 5x
= 3x – 5x + 2 + 4
= –2x + 6
(f – g)(x) = f (x) – g(x)
= [3x + 2] – [4 – 5x]
= 3x + 2 – 4 + 5x
= 3x + 5x + 2 – 4
= 8x – 2
(f × g)(x) = [f (x)][g(x)]
= (3x + 2)(4 – 5x)
= 12x + 8 – 15x2 – 10x
= –15x2 + 2x + 8
\left(\small{\dfrac{f}{g}}\right)(x) = \small{\dfrac{f(x)}{g(x)}}(
g
f
)(x)=
g(x)
f(x)
= \small{\dfrac{3x+2}{4-5x}}=
4−5x
3x+2
My answer is the neat listing of each of my results, clearly labelled as to which is which.
( f + g ) (x) = –2x + 6
( f – g ) (x) = 8x – 2
( f × g ) (x) = –15x2 + 2x + 8
\mathbf{\color{purple}{ \left(\small{\dfrac{\mathit{f}}{\mathit{g}}}\right)(\mathit{x}) = \small{\dfrac{3\mathit{x} + 2}{4 - 5\mathit{x}}} }}(
g
f
)(x)=
4−5x
3x+2
Step-by-step explanation:
The asymptote of g(x) is the aymptote of f(x) shifted six units up
Answer: B. One solution
Step-by-step explanation: As you see, both of these lines intersect on the point (0, 3). The point where the lines intersect is the solution. Since these lines are perpendicular, they will only intersect one time. Therefore, there is only one solution, that being (0, 3).
I hope this helps!! Pls mark brainliest :)
Answer: The required answers are
(a) 0.25, (b) 0.62, (c) 6.
Step-by-step explanation: Given that we toss a fair coin 10 times and X denote the number of heads.
We are to find
(a) the probability that X=5
(b) the probability that X greater or equal than 5
(c) the minimum value of a such that P(X ≤ a) > 0.8.
We know that the probability of getting r heads out of n tosses in a toss of coin is given by the formula of binomial distribution as follows :
(a) The probability of getting 5 heads is given by
(b) The probability of getting 5 or more than 5 heads is
(c) Proceeding as in parts (a) and (b), we see that
if a = 10, then
Therefore, the minimum value of a is 6.
Hence, all the questions are answered.