(a^4 + 4b^4) ÷ (a^2 - 2ab + 2b^2)
= [(a^2 - 2ab + 2b^2) (a^2 + 2ab + 2b^2)] / (a^2 - 2ab + 2b^2)
= a^2+2ab+2b^2 =The answer
(a + b)^2 = a^2 + 2ab + b^2 => square of sums
(a - b)^2 = a^2 - 2ab + b^2 => square of deference
and of course one of most important ones:
a^2 - b^2 = (a - b)(a + b) => difference of squares
Best Answer: (a^4 + 4b^4) ÷ (a^2 - 2ab + 2b^2)
= [(a^2 - 2ab + 2b^2) (a^2 + 2ab + 2b^2)] / (a^2 - 2ab + 2b^2)
= a^2 + 2ab + 2b^2
a^4 + 4b^4 => i.e. 4a^2b^2 ,
a^4 + 4a^2b^2 + 4b^4 => a^2 + 2ab + b^2 = (a + b)^2, if : a = a^2 , b = 2b^2:
(a^2 + 2b^2)^2 = a^4 + 4a^2b^2 + 4b^4 => We can't add or subtract the value to the expression.
a^4 + 4a^2b^2 + 4b^4 - 4a^2b^2 =>
(a^2 + 2b^2)^2 - 4a^2b^2 =>
(a^2 + 2b^2 - 2ab)(a^2 + 2b^2 + 2ab) =>
(a^2 - 2ab + 2b^2) (a^2 + 2ab + 2b^2)
Greetings!
It can be written as: 1 T-Shirt per 5 people
If you have any further questions feel free to ask.
Hope this helps.
???444489485857586868........................
Answer:
(12,0), (3, -1) (0,-4/3)
Step-by-step explanation:
To do this problem, you have to plug in the x and y values. For example, the first one would be 12-9(0)=12, and so on.
Answer:
P(Z < 2.37) = 0.9911.
Step-by-step explanation:
We are given that Let z denote a random variable that has a standard normal distribution.
Let Z = a random variable
So, Z ~ Standard Normal(0, 1)
As we know that the standard normal distribution has a mean of 0 and variance equal to 1.
Z =
~ N(0,1)
where,
= mean = 0
= standard deviation = 1
Now, the probability that z has a value less than 2.37 is given by = P(Z < 2.37)
P(Z < 2.37) = P(Z <
) = P(Z < 2.37) = 0.9911
The above probability is calculated by looking at the value of x = 2.37 in the z table which has an area of 0.9911.