Answer:
equation of the table is y=30x+60
60 degrees is what the temperature starts at
to get to 440 degrees he needs 12 minutes and 40 seconds
Step-by-step explanation:
the change in y over change in x is 90/3 which is the slope
slope is 30
if slope is 30 then 30*2+b=120 60+b=120 so b=60 and it is the y intercept
440=30x+60
380=30x
x=12 2/3
x= 12 minutes and 40 seconds
Answer:
0.048 is the probability that more than 950 message arrive in one minute.
Step-by-step explanation:
We are given the following information in the question:
The number of messages arriving at a multiplexer is a Poisson random variable with mean 15 messages/second.
Let X be the number of messages arriving at a multiplexer.
Mean = 15
For poison distribution,
Mean = Variance = 15

From central limit theorem, we have:
where n is the sample size.
Here, n = 1 minute = 60 seconds
P(x > 950)
Calculation the value from standard normal z table, we have,

0.048 is the probability that more than 950 message arrive in one minute.
If you would like to know whether or not what she wrote is accurate, it is.
Hope that helps!
Answer:3.42
Step-by-step explanation:to get the answer to a area equation you need to multiply the length by the width.
Answer:
85.5 minutes
Step-by-step explanation:
The amount of an element that will remain after time t can be expressed as a function of initial amount N0, time t, and half life th as;
Nt = N0 × e^(-λt)
Where;
Decay constant λ = ln(2)/th, substituting into the equation;
Nt = N0 × e^(-ln(2)t/th)
We need to make t the subject of formula;
Nt/N0 = e^(-ln(2)t/th)
ln(Nt/N0) = -ln(2)t/th
t = ln(Nt/N0) ÷ -ln(2)/th
Given;
Initial amount N0 = 760g
Final amount Nt = 11 g
Half life th = 14 minutes
the nearest tenth of a minute, would it take the element to decay to 11 grams can be derived using the formula;
t = ln(Nt/N0) ÷ -ln(2)/th
Substituting the given values;
t = ln(11/760) ÷ -ln(2)/14
t = 85.5 minutes