Answer:
Formas: todas las bacterias se pueden clasificar en una de las tres formas básicas: esferas (cocos), bastones (bacilos) y espirales o hélices (espiroquetas). Necesidad de oxígeno: las bacterias también se clasifican en dos grupos, según si necesitan oxígeno para vivir y crecer o no les es necesario.
Dab most likely inhibits phosphorolysis of glycogen reaction.
<h3>What is
phosphorolysis?</h3>
- Inorganic phosphate acts as the attacking group during phosphorolysis, which is the cleavage of a molecule.
- It's comparable to hydrolysis.
- A reversible process akin to hydrolysis where phosphoric acid behaves like water and produces phosphate as a byproduct.
- It's comparable to hydrolysis.
- Glycogen phosphorylase, which catalyzes the assault of inorganic phosphate on the terminal glycosyl residue at the nonreducing end of a glycogen molecule, is an example of this.
- The difference is that while reactions involving hydrolysis use water to split larger molecules into smaller ones, reactions involving phosphorolysis use phosphate to achieve the same result.
- The primary enzyme in utilizing the glycogen reserves in the muscle and liver is known as glycogen phosphorylase.
- It catalyzes the sequential phosphorolysis of glycogen to liberate glucose-1-phosphate.
Learn more about phosphorolysis here:
brainly.com/question/21882419
#SPJ4
We group artworks with similar characteristics into periods or styles because it is easiest to do it that way - this way we can find common characteristics in these literary/artistic eras, and name them. For example, the Renaissance had a distinct style, which differs greatly from that of Romanticism.
ATP synthesization - Simple and complex lipids or carbohydrates are used to produce ATP through redox reactions. After the hydrolysis of complex carbohydrates, glucose and fructose are formed and the triglycerides are metabolized to form glycerol and fatty acids. ATP is then synthesized by oxidative phosphorylation and photophosphorylation during the energy production with in the living organisms. ATP production usually takes place in the mitochondria of the cell. The important pathways by which ATP is generated are glycolysis, the citric acid cycle (or the Kreb’s cycle), and the electron transport chain (or the oxidative phosphorylation pathway). In these three cycles of cellular respiration adenosine diphosphate (ADP) is converted to ATP and energy is released from molecules.