1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex_Xolod [135]
3 years ago
8

A rectangular bathroom tile is 2 1/3 times as wide as it is tall.If the tile is 5cm tall,how wide is it?

Mathematics
1 answer:
Neko [114]3 years ago
8 0
The width of the rectangular bathroom tile is 11 and 2/3 centimeters. Taft is because 2x5 is 10 cm and 1/3x5 is 5/3. 5/3 simplified as a mixed number is 1 and 2/3. 1 and 2/3 combined with 10 is 11 and 2/3 centimeters.
You might be interested in
Use yes or no Can you please help me
Gemiola [76]
The answer Yes, yes, no
7 0
2 years ago
HEY LOOK
KonstantinChe [14]
You just have to find the greatest common factor for both 28 and 24, which is 4. You can make 4 packets with 7 milk chocolates and 6 dark chocolates.
4 0
2 years ago
Please help me to prove this!​
Ymorist [56]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

3 0
3 years ago
Enola owns a small business selling ice-cream. She knows
S_A_V [24]

Answer:

5.65................................

Step-by-step explanation:

6 0
2 years ago
Maya and Sally were the two finalists in a singing competition. The person with the most votes from the audience was chosen as t
USPshnik [31]
Sally-votes received 25%of total votes=0.25*125000=31250
Maya- votes received 31250+62500=93750
8 0
3 years ago
Other questions:
  • The length of a rectangle is (8x – 9) and the width is (2x + 3).
    6·1 answer
  • HELP PLEASE,I'LL GIVE OUT BRAINLIEST AND 10 POINTS.
    5·2 answers
  • What is the least common multiple of 25, 10 and 30?
    13·2 answers
  • 1⁄2 × 1⁄5 =<br><br> help//.....
    10·2 answers
  • The coefficient of determination of a set of data points is 0.93 and the slope of the regression line is -5.26. Determine the li
    15·1 answer
  • Ughhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
    10·1 answer
  • <img src="https://tex.z-dn.net/?f=a%5E%7B2%7D%20%2Aa%5E%7B3%5C%5C%7D" id="TexFormula1" title="a^{2} *a^{3\\}" alt="a^{2} *a^{3\\
    9·2 answers
  • ⚠️ILL GIVE BRAINIEST, please answer with a full sentence or more. The graph of a quadratic relationship is in the shape of a par
    14·1 answer
  • A population of insects increases at a rate of 1. 5% per day. About how long will it take the population to double? 2. 5 days 5.
    11·1 answer
  • Are the triangles similar? If so, state the similarity and the postulate or theorem that justifies your answer.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!