The matrix equation that represents this situation is
![\left[\begin{array}{ccc}3&2&0\\1&0&4\\3&1&1\end{array}\right]*\left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{ccc}13.50\\16.50\\14.00\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%262%260%5C%5C1%260%264%5C%5C3%261%261%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D13.50%5C%5C16.50%5C%5C14.00%5Cend%7Barray%7D%5Cright%5D%20)
Use technology to find the inverse of matrix A:
![A^{-1}= \left[\begin{array}{ccc}-\frac{2}{5}&-\frac{1}{5}&\frac{4}{5}\\ \frac{11}{10}&\frac{3}{10}&-\frac{6}{5}\\\frac{1}{10}&\frac{3}{10}&-\frac{1}{5}\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Cfrac%7B2%7D%7B5%7D%26-%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B4%7D%7B5%7D%5C%5C%0A%5Cfrac%7B11%7D%7B10%7D%26%5Cfrac%7B3%7D%7B10%7D%26-%5Cfrac%7B6%7D%7B5%7D%5C%5C%5Cfrac%7B1%7D%7B10%7D%26%5Cfrac%7B3%7D%7B10%7D%26-%5Cfrac%7B1%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D%20)
Multiplying A inverse by B, we get the solution matrix
[tex]\left[\begin{array}{ccc}2.50\\3\\3.50\end{array}\right][\tex]
The formula for the area of a trapezoid is
A = (1/2)(b₁ +b₂)h
Substitute the given information and evaluate. (Make sure all dimensions have the same units.)
A = (1/2)(12 ft +5 ft)(8 ft)
A = 68 ft²
The area of the trapezoid is 68 square feet.
Answer:
(1, 8, 6) or (2, 12, 6) or (3, 24, 6)
Step-by-step explanation:
The last number must be 6:
1/2 = 6/12
The other two numbers cannot be 6, but can have several values:
1/2 = 1/8 +3/8 = 6/12
1/2 = 2/8 +3/12 = 6/12
1/2 = 3/8 +3/24 = 6/12
__
There are a variety of negative solutions as well. For example, ...
1/2 = -8/8 +3/2 = 6/12
-45x + 72
Steps:
9(-5x+8) distribute then simplify
-45x + 72