The answer would be A. When using Cramer's Rule to solve a system of equations, if the determinant of the coefficient matrix equals zero and neither numerator determinant is zero, then the system has infinite solutions. It would be hard finding this answer when we use the Cramer's Rule so instead we use the Gauss Elimination. Considering the equations:
x + y = 3 and <span>2x + 2y = 6
Determinant of the equations are </span>
<span>| 1 1 | </span>
<span>| 2 2 | = 0
</span>
the numerator determinants would be
<span>| 3 1 | . .| 1 3 | </span>
<span>| 6 2 | = | 2 6 | = 0.
Executing Gauss Elimination, any two numbers, whose sum is 3, would satisfy the given system. F</span>or instance (3, 0), <span>(2, 1) and (4, -1). Therefore, it would have infinitely many solutions. </span>
Answer:
a) The correct option is C: 4x
b) The correct option is B: 2x
Step-by-step explanation:
a) Usually when we have a real number multiplying a variable, we do not need to write the multiplication symbol.
So instead of writing:
4×x
We can write:
4x
And this will be equivalent.
Then in this case the correct option is C.
b) We know that if we have the multiplication of A by n, this will be equivalent to add A n times.
Then if we have the sum of A, for example, 4 times, we have:
A + A + A + A
And this can be written as 4*A
In this case, we have the expression x + x.
So we are adding x two times, then this can be written as: 2*x, or, as we said earlier, this also can be written as 2x.
Then the correct option is option B.
Answer:
The approximate probability that more than 360 of these people will be against increasing taxes is P(Z> <u>0.6-0.45)</u>
√0.45*0.55/600
The right answer is B.
Step-by-step explanation:
According to the given data we have the following:
sample size, h=600
probability against increase tax p=0.45
The probability that in a sample of 600 people, more that 360 people will be against increasing taxes.
We find that P(P>360/600)=P(P>0.6)
The sample proposition of p is approximately normally distributed mith mean p=0.45
standard deviation σ=√P(1-P)/n=√0.45(1-0.45)/600
If x≅N(u,σ∧∧-2), then z=(x-u)/σ≅N(0,1)
Now, P(P>0.6)=P(<u>P-P</u> > <u>0.6-0.45)</u>
σ √0.45*0.55/600
=P(Z> <u>0.6-0.45)</u>
√0.45*0.55/600