In analytic geometry, using the common convention that the horizontal axis represents a variable x and the vertical axis represents a variable y, a y-intercept or vertical intercept is a point where the graph of a function or relation intersects the y-axis of the coordinate system. As such, these points satisfy x = 0.
We take the equation <span>d = -16t^2+12t</span> and subtract d from both sides to get
0<span> = -16t^2+12t - d
We apply the quadratic formula to solve for t. With a = -16, b = 12, c = -d, we have
t = [ -(12) </span><span>± √( 12^2 - 4(-16)(-d) ) ] / [2 * -16]</span>
= [- 12 ± √(144-64d) ] / (-32)
= [- 12 ± √16(9-4d)] / (-32)
= [- 12 ± 4√(9-4d)] / (-32)
= 3/8 ±√(9-4d) / 8
The answer to your question is t = 3/8 ±√(9-4d) / 8
The location of point K as a mixed number is 8 6/8 = 8 3/4 because there are 8 lines, and point K is on the 6th line.
Hope this helped☺☺
First you subtract the two equations
x^2-2x+3-6x
You simplify that and get
x^2+4x+3 = 0
Now we solve using the quadratic formula.
We get x = -1 and x = -3.
Now we find the y values by plugging the x values into the equation.
f(x) is the same as y.
y = (-1)^2 - 2(-1) + 3
y = 1+2+3
y = 6
Now for the other x value.
y = (-3)^2 - 2(-3) + 3
y = 9+9
y = 18
So the two ordered pairs are (-1,6) and (-3,18)
Answer:
152 cm²
Step-by-step explanation:
The shaded area is calculated as
outer area - inner white area
= (12 × 18) - (8 × 8 )
= 216 - 64
= 152 cm²