The longest possible altitude of the third altitude (if it is a positive integer) is 83.
According to statement
Let h is the length of third altitude
Let a, b, and c be the sides corresponding to the altitudes of length 12, 14, and h.
From Area of triangle
A = 1/2*B*H
Substitute the values in it
A = 1/2*a*12
a = 2A / 12 -(1)
Then
A = 1/2*b*14
b = 2A / 14 -(2)
Then
A = 1/2*c*h
c = 2A / h -(3)
Now, we will use the triangle inequalities:
2A/12 < 2A/14 + 2A/h
Solve it and get
h<84
2A/14 < 2A/12 + 2A/h
Solve it and get
h > -84
2A/h < 2A/12 + 2A/14
Solve it and get
h > 6.46
From all the three inequalities we get:
6.46<h<84
So, the longest possible altitude of the third altitude (if it is a positive integer) is 83.
Learn more about TRIANGLE here brainly.com/question/2217700
#SPJ4
The sum of the first n odd numbers is n squared! So, the short answer is that the sum of the first 70 odd numbers is 70 squared, i.e. 4900.
Allow me to prove the result: odd numbers come in the form 2n-1, because 2n is always even, and the number immediately before an even number is always odd.
So, if we sum the first N odd numbers, we have

The first sum is the sum of all integers from 1 to N, which is N(N+1)/2. We want twice this sum, so we have

The second sum is simply the sum of N ones:

So, the final result is

which ends the proof.
D, 8880 is divisible by both ten and 5.
Answer:
What is the Question so I can answer?
Step-by-step explanation: