-4.4(s - 2) + 6.9s = 14.8
Distribute -4.4 into the parenthesis:
-4.4s + 8.8 + 6.9s = 14.8
Combine like terms:
2.5s + 8.8 = 14.8
Subtract 8.8 from both sides of the equation:
2.5s + 8.8 - 8.8 = 14.8 - 8.8
2.5s = 6
Divide both sides by 2.5:
2.5s/2.5 = 6/2,5
s = 2.4
s =
Answer:
x = 14
Step-by-step explanation:
For complementary angles, the sum of two angles is equal to 90 degrees.
We have,

ATQ,

Taking like terms together,
4x+x =90-30+10
5x = 70
x = 14
So, the value of x is 14.
The missing value is 81.87 degrees. This is a guess let me know if I'm wrong :)
As given by the question
There are given that the vector:

Now,
From the formula to find the unit vector in same direction is:

Then,
![\begin{gathered} \vec{u}=\frac{\vec{v}}{\lvert\vec{v}\rvert} \\ \vec{u}=\frac{\vec{2i}+\vec{3j}}{\lvert\vec{2i}+\vec{3j}\rvert} \\ \vec{u}=\frac{\vec{2i}+\vec{3j}}{\lvert\sqrt[]{2^2+3^2}\rvert} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cvec%7Bu%7D%3D%5Cfrac%7B%5Cvec%7Bv%7D%7D%7B%5Clvert%5Cvec%7Bv%7D%5Crvert%7D%20%5C%5C%20%5Cvec%7Bu%7D%3D%5Cfrac%7B%5Cvec%7B2i%7D%2B%5Cvec%7B3j%7D%7D%7B%5Clvert%5Cvec%7B2i%7D%2B%5Cvec%7B3j%7D%5Crvert%7D%20%5C%5C%20%5Cvec%7Bu%7D%3D%5Cfrac%7B%5Cvec%7B2i%7D%2B%5Cvec%7B3j%7D%7D%7B%5Clvert%5Csqrt%5B%5D%7B2%5E2%2B3%5E2%7D%5Crvert%7D%20%5Cend%7Bgathered%7D)
Then,
![\begin{gathered} \vec{u}=\frac{\vec{2i}+\vec{3j}}{\sqrt[]{2^2+3^2}} \\ \vec{u}=\frac{\vec{2i}+\vec{3j}}{\sqrt[]{4+9}} \\ \vec{u}=\frac{\vec{2i}+\vec{3j}}{\sqrt[]{13}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cvec%7Bu%7D%3D%5Cfrac%7B%5Cvec%7B2i%7D%2B%5Cvec%7B3j%7D%7D%7B%5Csqrt%5B%5D%7B2%5E2%2B3%5E2%7D%7D%20%5C%5C%20%5Cvec%7Bu%7D%3D%5Cfrac%7B%5Cvec%7B2i%7D%2B%5Cvec%7B3j%7D%7D%7B%5Csqrt%5B%5D%7B4%2B9%7D%7D%20%5C%5C%20%5Cvec%7Bu%7D%3D%5Cfrac%7B%5Cvec%7B2i%7D%2B%5Cvec%7B3j%7D%7D%7B%5Csqrt%5B%5D%7B13%7D%7D%20%5Cend%7Bgathered%7D)
Then,
Rationalize the denominator:
So,
![\begin{gathered} \vec{u}=\frac{\vec{2i}+\vec{3j}}{\sqrt[]{13}} \\ \vec{u}=\frac{\vec{2i}+\vec{3j}}{\sqrt[]{13}}\times\frac{\sqrt[]{13}}{\sqrt[]{13}} \\ \vec{u}=\frac{\vec{\sqrt[]{13}(2i}+\vec{3j})}{13} \\ \vec{u}=\frac{2\sqrt[]{13}}{13}i+\frac{3\sqrt[]{13}}{13}j \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cvec%7Bu%7D%3D%5Cfrac%7B%5Cvec%7B2i%7D%2B%5Cvec%7B3j%7D%7D%7B%5Csqrt%5B%5D%7B13%7D%7D%20%5C%5C%20%5Cvec%7Bu%7D%3D%5Cfrac%7B%5Cvec%7B2i%7D%2B%5Cvec%7B3j%7D%7D%7B%5Csqrt%5B%5D%7B13%7D%7D%5Ctimes%5Cfrac%7B%5Csqrt%5B%5D%7B13%7D%7D%7B%5Csqrt%5B%5D%7B13%7D%7D%20%5C%5C%20%5Cvec%7Bu%7D%3D%5Cfrac%7B%5Cvec%7B%5Csqrt%5B%5D%7B13%7D%282i%7D%2B%5Cvec%7B3j%7D%29%7D%7B13%7D%20%5C%5C%20%5Cvec%7Bu%7D%3D%5Cfrac%7B2%5Csqrt%5B%5D%7B13%7D%7D%7B13%7Di%2B%5Cfrac%7B3%5Csqrt%5B%5D%7B13%7D%7D%7B13%7Dj%20%5Cend%7Bgathered%7D)
Hence, the unit vector is shown below: