1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vilka [71]
3 years ago
15

Solve the system. x – 4y – z = 21 6x – 3y – z = –4 –x +2y –5z = 19 Answer: x =      , y =      , z =      

Mathematics
1 answer:
FrozenT [24]3 years ago
7 0

Consider the given equations:

-x+2y-5z = 19  (Equation 1)

6x-3y-z= -4    (Equation 2)

x-4y-z=21        (Equation 3)

Adding equations 1 and 3, we get

-x+2y-5z+x-4y-z = 19+21

-2y-6z = 40

So, we get -y -3z = 20 (Equation 4)

Multiplying equation 3 by '6', we get

6x - 24y-6z = 126       (Equation 5)

Subtracting equation 5 from equation 2, we get

(6x-3y-z)-(6x - 24y-6z) = -4-126

6x-3y-z-6x + 24y+6z) = -4-126

21y+5z = -130     (Equation 6)

Multiplying equation 4 by '21' and adding it to equation 6, we get

-21y-63z+21y+5z = 420-130

-58z = 290

So, z = -5

Since, -y-3z = 20 -y+15=20 y=-5

So, y=-5

Now, x-4y-z=21 x-4(-5)-(-5)=21 x+20+5=21 x+25=21 x= -4

So, x = -4

Therefore, x = -4, y= -5 and z= -5 are the solutions to the given equations.

You might be interested in
Add 3 and 7. then multiply by 3.
Reil [10]

Answer:

30

Step-by-step explanation:

First, add 3 and 7

3 + 7 =10

The multiply by 3

10*3= 30

Hope this helps!

8 0
3 years ago
Read 2 more answers
1.Solve the equation. Check for extraneous solutions.
elena55 [62]
Okay so I did the math. 

1. Two solutions were found :<span><span> 
z=-1
</span><span>z=2/3
</span></span><span>Step  1  :</span>Rearrange this Absolute Value Equation

Absolute value equalitiy entered
      |2z-3| = 4z-1 

<span>Step  2  :</span>Clear the Absolute Value Bars

Clear the absolute-value bars by splitting the equation into its two cases, one for the Positive case and the other for the Negative case.

The Absolute Value term is<span> |2z-3|

 </span>For the Negative case we'll use -(2z-3) 

For the Positive case we'll use (2z-3) 

<span>Step  3  :</span>Solve the Negative Case

      -(2z-3) = 4z-1 

     Multiply
      -2z+3 = 4z-1 

     Rearrange and Add up
      -6z = -4 

     Divide both sides by 6 
      -z = -(2/3) 

     Multiply both sides by (-1) 
      z = (2/3) 
     Which is the solution for the Negative Case

<span>Step  4  :</span>Solve the Positive Case

      (2z-3) = 4z-1 

     Rearrange and Add up
      -2z = 2 

     Divide both sides by 2 
      -z = 1 

     Multiply both sides by (-1) 
      z = -1 
     Which is the solution for the Positive Case
Step  5  :Wrap up the solution

<span> z=2/3
</span><span> z=-1

2. </span>-6 < x < 26/3

<span>Step  1  :</span>Rearrange this Absolute Value Inequality

Absolute value inequalitiy entered
      |3x-4|+5 < 27 

Another term is moved / added to the right hand side.

      |3x-4| < 22 

<span>Step  2  :</span>Clear the Absolute Value Bars

Clear the absolute-value bars by splitting the equation into its two cases, one for the Positive case and the other for the Negative case.

The Absolute Value term is<span> |3x-4|

 </span>For the Negative case we'll use -(3x-4) 

For the Positive case we'll use (3x-4) 

<span>Step  3  :</span>Solve the Negative Case

      -(3x-4) < 22 

     Multiply
      -3x+4 < 22 

     Rearrange and Add up
      -3x < 18 

     Divide both sides by 3 
      -x < 6 

     Multiply both sides by (-1) 
     Remember to flip the inequality sign 
      x > -6 
     Which is the solution for the Negative Case

<span>Step  4  :</span>Solve the Positive Case

      (3x-4) < 22 

     Rearrange and Add up
      3x < 26 

     Divide both sides by 3 
      x < (26/3) 

     Which is the solution for the Positive Case

<span>Step  5  :</span>Wrap up the solution

    -6 < x < 26/3

Solution in Interval Notation

    (-6,26/3) 

HOPE THIS HELPS :D
7 0
3 years ago
Here are the pictures I need help with (Math)
astraxan [27]
Idk I just want points can u give breanlyist please
3 0
3 years ago
Read 2 more answers
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
2 years ago
Which one ????????????????????
olga55 [171]

Answer:

A. The first one

Step-by-step explanation:

Because it has a negative slope and if you follow the line you can tell it has a slope of -1/4.

5 0
2 years ago
Read 2 more answers
Other questions:
  • How many times greater is the digit in the tenths place than in the hundredths place?
    7·1 answer
  • What 4 coins add up to 45 cents ? <br> I probably know this it’s just it’s been a long day
    10·2 answers
  • Evelyn has $524.96 in her checking account. She must maintain a $500 balance to avoid a fee. She wrote a check for $32.50 today.
    5·1 answer
  • The minimum and maximum distances from a focus to a point on an ellipse occur when that point on the ellipse is an endpoint of t
    8·2 answers
  • In order to check for regional bias in a widely used standardized test, researchers checked for a difference in the means of ran
    8·1 answer
  • Solve the proportion and round the answer to the nearest hundredth
    14·2 answers
  • Which linear inequality represents the graph below?
    8·1 answer
  • Someone help me on this Problem !!
    13·1 answer
  • A teacher is assessing the correlation between the number of hours spent studying and the average score on a science test. The t
    11·1 answer
  • The table shows the relationship between the number of cups of cereal in the number of cups of raisins in a cereal bar recipe ja
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!