Answer:
P(x ≤ 5 ) = 0.9707
P ( x ≥ 6) = 0.0293
Step-by-step explanation:
The probability of a binomial mass distribution can be expressed with the formula:
![\mathtt{P(X=x) =(^{n}_{x} ) \ \pi^x \ (1-\pi)^{n-x}}](https://tex.z-dn.net/?f=%5Cmathtt%7BP%28X%3Dx%29%20%3D%28%5E%7Bn%7D_%7Bx%7D%20%29%20%20%20%5C%20%20%5Cpi%5Ex%20%5C%20%20%281-%5Cpi%29%5E%7Bn-x%7D%7D)
![\mathtt{P(X=x) =(\dfrac{n!}{x!(n-x)!} ) \ \pi^x \ (1-\pi)^{n-x}}](https://tex.z-dn.net/?f=%5Cmathtt%7BP%28X%3Dx%29%20%3D%28%5Cdfrac%7Bn%21%7D%7Bx%21%28n-x%29%21%7D%20%29%20%20%20%5C%20%20%5Cpi%5Ex%20%5C%20%20%281-%5Cpi%29%5E%7Bn-x%7D%7D)
where;
n = 8 and π = 0.36
For x = 5
The probability ![\mathtt{P(X=5) =(\dfrac{8!}{5!(8-5)!} ) \ 0.36^5 \ (1-0.36)^{8-5}}](https://tex.z-dn.net/?f=%5Cmathtt%7BP%28X%3D5%29%20%3D%28%5Cdfrac%7B8%21%7D%7B5%21%288-5%29%21%7D%20%29%20%20%20%5C%20%200.36%5E5%20%5C%20%20%281-0.36%29%5E%7B8-5%7D%7D)
![\mathtt{P(X=5) =(\dfrac{8!}{5!(3)!} ) \ 0.36^5 \ (0.64)^{3}}](https://tex.z-dn.net/?f=%5Cmathtt%7BP%28X%3D5%29%20%3D%28%5Cdfrac%7B8%21%7D%7B5%21%283%29%21%7D%20%29%20%20%20%5C%20%200.36%5E5%20%5C%20%20%280.64%29%5E%7B3%7D%7D)
![\mathtt{P(X=5) =(\dfrac{8 \times 7 \times 6 \times 5!}{5!(3)!} ) \times \ 0.0060466 \ \times 0.262144}](https://tex.z-dn.net/?f=%5Cmathtt%7BP%28X%3D5%29%20%3D%28%5Cdfrac%7B8%20%5Ctimes%207%20%5Ctimes%206%20%5Ctimes%205%21%7D%7B5%21%283%29%21%7D%20%29%20%20%5Ctimes%20%20%5C%200.0060466%20%5C%20%20%5Ctimes%200.262144%7D)
![\mathtt{P(X=5) =(\dfrac{8 \times 7 \times 6 }{3 \times 2 \times 1} ) \times \ 0.0060466 \ \times 0.262144}](https://tex.z-dn.net/?f=%5Cmathtt%7BP%28X%3D5%29%20%3D%28%5Cdfrac%7B8%20%5Ctimes%207%20%5Ctimes%206%20%7D%7B3%20%5Ctimes%202%20%5Ctimes%201%7D%20%29%20%20%5Ctimes%20%20%5C%200.0060466%20%5C%20%20%5Ctimes%200.262144%7D)
![\mathtt{P(X=5) =({8 \times 7 } ) \times \ 0.0060466 \ \times 0.262144}](https://tex.z-dn.net/?f=%5Cmathtt%7BP%28X%3D5%29%20%3D%28%7B8%20%5Ctimes%207%20%7D%20%29%20%20%5Ctimes%20%20%5C%200.0060466%20%5C%20%20%5Ctimes%200.262144%7D)
![\mathtt{P(X=5) =0.0887645}](https://tex.z-dn.net/?f=%5Cmathtt%7BP%28X%3D5%29%20%3D0.0887645%7D)
to 4 decimal places
b. x ≤ 5
The probability of P ( x ≤ 5)![\mathtt{P(x \leq 5) = P(x = 0)+ P(x = 1)+ P(x = 2)+ P(x = 3)+ P(x = 4)+ P(x = 5})](https://tex.z-dn.net/?f=%5Cmathtt%7BP%28x%20%5Cleq%205%29%20%3D%20P%28x%20%3D%200%29%2B%20P%28x%20%3D%201%29%2B%20P%28x%20%3D%202%29%2B%20P%28x%20%3D%203%29%2B%20P%28x%20%3D%204%29%2B%20P%28x%20%3D%205%7D%29)
![{P(x \leq 5) = ( \dfrac{8!}{0!(8!)} \times (0.36)^0 \times (1-0.36)^8 \ ) + \dfrac{8!}{1!(7!)} \times (0.36)^1 \times (1-0.36)^7 \ +](https://tex.z-dn.net/?f=%7BP%28x%20%5Cleq%205%29%20%3D%20%28%20%5Cdfrac%7B8%21%7D%7B0%21%288%21%29%7D%20%5Ctimes%20%20%280.36%29%5E0%20%20%5Ctimes%20%20%281-0.36%29%5E8%20%20%5C%20%29%20%20%2B%20%20%5Cdfrac%7B8%21%7D%7B1%21%287%21%29%7D%20%5Ctimes%20%20%280.36%29%5E1%20%20%5Ctimes%20%20%281-0.36%29%5E7%20%20%5C%20%2B)
![\dfrac{8!}{2!(6!)} \times (0.36)^2 \times (1-0.36)^6 \ + \dfrac{8!}{3!(5!)} \times (0.36)^3 \times (1-0.36)^5 + \dfrac{8!}{4!(4!)} \times (0.36)^4 \times (1-0.36)^4 \ + \dfrac{8!}{5!(3!)} \times (0.36)^5 \times (1-0.36)^3 \ )](https://tex.z-dn.net/?f=%5Cdfrac%7B8%21%7D%7B2%21%286%21%29%7D%20%5Ctimes%20%20%280.36%29%5E2%20%20%5Ctimes%20%20%281-0.36%29%5E6%20%20%5C%20%2B%20%20%5Cdfrac%7B8%21%7D%7B3%21%285%21%29%7D%20%5Ctimes%20%20%280.36%29%5E3%20%20%5Ctimes%20%20%281-0.36%29%5E5%20%2B%20%20%5Cdfrac%7B8%21%7D%7B4%21%284%21%29%7D%20%5Ctimes%20%20%280.36%29%5E4%20%20%5Ctimes%20%20%281-0.36%29%5E4%20%20%5C%20%20%2B%20%20%5Cdfrac%7B8%21%7D%7B5%21%283%21%29%7D%20%5Ctimes%20%20%280.36%29%5E5%20%20%5Ctimes%20%20%281-0.36%29%5E3%20%20%5C%20%29)
P(x ≤ 5 ) = 0.0281+0.1267+0.2494+0.2805+0.1972+0.0888
P(x ≤ 5 ) = 0.9707
c. x ≥ 6
The probability of P ( x ≥ 6) = 1 - P( x ≤ 5 )
P ( x ≥ 6) = 1 - 0.9707
P ( x ≥ 6) = 0.0293
Answer:
Therefore the two values required are 2.08 and -11.08.
Step-by-step explanation:
i) f(x) =
+ 10x - 12 is a quadratic equation and a quadratic equation will have two roots whose values when substituted in to the given quadratic equation will give the value.
ii) The question is therefore essentially asking us to find the roots of the given quadratic equation.
This can be done by equating the given quadratic equation to zero and then solving the equation for its roots.
∴
+ 10x -12 = 0 ⇒ x = (-10 ±
) ÷ 2
= (-10 ± 12.166)÷2 = 2.08, -11.08
Therefore the two values required are 2.08 and -11.08
Hello!
Here a graph of the slope!
11pi/12
Note:
2pi = 360°
(11pi/12)(360°/2pi)
330°