Answer:
Hey again! Just remember about the number lines. If it's easier, you can use a calculator to divide the fractions to make them easier to visualize in decimal form.
The answer to this one is:
-2.4
-2.25
-11/5 (which is -2.2)
-15/10 (1.5)
-1.6
the height of the pentagonal pyramid is 5. 70 meters
<h3>Volume of a regular pentagonal pyramid</h3>
The formula for determining the volume of a regular pentagonal pyramid is given as;
V=5/12tan(54°)ha^2
Where
- a is the base edge
- h is the height
We have the volume to be;
volume = 82. 5 cubic centers
height = h
a = 5m
Substitute the values
× × ×
× × ×
Make 'h' subject of formula
h = 5. 70 meters
The height of the pentagonal pyramid is 5. 70 meters
Thus, the height of the pentagonal pyramid is 5. 70 meters
Learn more about a pentagonal pyramid here:
brainly.com/question/16315924
#SPJ1
Answer:
Value of f (Parapedicular) = 7√6
Step-by-step explanation:
Given:
Given triangle is a right angle triangle
Value of base = 7√2
Angle made by base and hypotenuse = 60°
Find:
Value of f (Parapedicular)
Computation:
Using trigonometry application
Tanθ = Parapedicular / Base
Tan60 = Parapedicular / 7√2
√3 = Parapedicular / 7√2
Value of f (Parapedicular) = 7√2 x √3
Value of f (Parapedicular) = 7√6
228/28 1/2 ÷ 4 3/4 = 57/2 × 4/19= 228/38 = 6
Btw i did keep change flip
Answer:
He gave 46 to Tom
Step-by-step explanation:
He started is 51 notebooks- 15 + 17 + 19 = 51
He then gave some away until he only had 5 left 51 - 5 = 46
He gave 46 to Tom