1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Free_Kalibri [48]
3 years ago
6

Please answer by today!!!!!

Mathematics
2 answers:
dolphi86 [110]3 years ago
6 0
Either 7 = 36 2/3

or
1) 7
2) 10
3) 11
4) 15
gogolik [260]3 years ago
3 0
The first one,7 

good luck!!

You might be interested in
Which expression shows 2x² + 18 factored completely
Lerok [7]

Answer:

2(x^2+9)

Step-by-step explanation:

2x^2 +18

Factor out a 2

2(x^2+9)

3 0
3 years ago
Identify the conditional relative frequency by row. round to the nearest percent. the conditional relative frequency that someon
Daniel [21]

Answer:1. 24%, 2. 38%

Step-by-step explanation:

7 0
2 years ago
Find the derivative of <img src="https://tex.z-dn.net/?f=tan%5E%7B-1%7D%20x" id="TexFormula1" title="tan^{-1} x" alt="tan^{-1} x
sladkih [1.3K]

\huge{\color{magenta}{\fbox{\textsf{\textbf{Answer}}}}}

\frak {\huge{ \frac{1}{1 +  {x}^{2} } }}

Step-by-step explanation:

\sf let \: f(x) =  { \tan }^{ - 1} x \\  \\  \sf f(x + h) =  { \tan}^{ - 1} (x + h)

\sf f'(x) =  \frac{f(x+h)  - f(x) }{h}

\sf \implies \lim_{  h \to 0  } \frac{ { \tan }^{ - 1}(x + h) -  { \tan}^{ - 1}x  }{h}  \\  \\  \\  \sf  \implies  \lim_ {h \to 0}    \frac{  { \tan}^{ - 1} \frac{x + h - x}{1 + (x + h)x} }{h}

By using

\sf { \tan}^{ - 1} x -  { \tan}^{ - 1} y   = \\   \sf { \tan}^{ - 1}  \frac{x - y}{1 + xy} formula

\sf  \implies  \large \lim_{h \to0 }   \frac{  { \tan}^{ - 1}  \frac{h}{1 + hx +  {x}^{2} } }{h}  \\  \\  \\  \sf  \implies   \large{\lim_{h \to0}   } \frac{ { \tan}^{ - 1}  \frac{h}{1 + hx +  {x}^{2} } }{ \frac{h}{1 + hx  +  {x}^{2} }  \times (1 + hx +  {x}^{2} )}  \\  \\  \\  \sf  \implies \large  \lim_{h \to0} \frac{ { \tan}^{ - 1} \frac{h}{1 + hx +  {x}^{2} }  }{ \frac{h}{1 + hx +  {x}^{2} } }  +  \lim_{h \to0} \frac{1}{1 + hx +  {x}^{2} }

<u>Now</u><u> </u><u>putting</u><u> </u><u>the</u><u> </u><u>value</u><u> </u><u>of</u><u> </u><u>h</u><u> </u><u>=</u><u> </u><u>0</u>

<u>\sf  \large  \implies 0 +  \frac{1}{1 + 0 +  {x}^{2} }  \\  \\  \\  \purple{ \boxed  { \implies  \frac{1}{1 +  {x}^{2} } }}</u>

6 0
2 years ago
PLEASE HELP, I REALLY NEED IT 25 POINTS AND GIVE BRAINLIEST TO BEST ANSWER
kozerog [31]

Answer: i.m on school com so i can,t see the pictures

Step-by-step explanation:

5 0
3 years ago
My dog is 113cm tall how many meters tall is my dog? (Hint: 1m=100cm (hint: 1 m=100cm
Llana [10]

Answer:

Your dog will be 1.13 meters tall

7 0
3 years ago
Other questions:
  • If f(x)=2x^2+2 and g(×)=x^2-1 find (f-g)(x)
    13·1 answer
  • Plzzz helppppppp !!!!!!!
    7·2 answers
  • which relation represents a function? a. {(0,0,(2,3),(2,5),(6,6)} b. {(3,5),(8,4),(10,11),(10,6)} c. {(-2,2),(0,2),(7,2),(11,2)}
    14·2 answers
  • Is 4-16th equivalent to 0.25
    5·2 answers
  • What is -23/6 - -7/3?
    14·1 answer
  • ESRHZD ANSWER QUICK I WILL GIVE BRAINLIEST
    7·2 answers
  • If a dilation is applied to a triangle, then the image must be _____.
    6·2 answers
  • |-1| ___ 1<br><br> ≥<br> ≤<br> ≠<br><br> =<br> what does this mean
    14·1 answer
  • -4 -12
    14·2 answers
  • 5<br> 0 = - in<br> =<br> in quadrant II<br> Given cos =<br> Find sin<br> 3
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!