The answer is 0.5 hours.
A velocity (v) of an object is a distance (d) divided by time (t):
v = d ÷ t ⇒ t = d ÷ v
It is given:
v1 = 192 km/h
v2 = 960 km/h
t1 - t2 = 2h
We need to calculate t2.
Since they will travel the same distance before the jet overtakes the plane, we can say that d1 = d2 = d
Now, let's express t1 and t2:
t1 = d/192
t2 = d/960
Therefore: d/192 - d/960 = 2
The least common denominator is 960, so:
5d/960 - d/960 = 2
4d/960 = 2
4d = 2 · 960
4d = 1920
d = 1920 ÷ 4 = 480 km
Now t2 = d/960 = 480/960 = 0.5 hours.
The correct option is the second one y<=1/2x+3
The change is the remaining money that is needed to take from the seller so a change of Umberto will be $6.62.
<h3>What is subtraction?</h3>
To subtract in mathematics is to take something away from a group or a number of objects.
The group's total number of items decreases or becomes lower when we subtract from it.
Given that,
Umberto buys a game for $7.89 and some batteries for $5.49.
Total money of buying = 7.89 + 5.49 = $13.38
Now he gives a $20 bill.
Remaining (change) = 20 - 13.38
⇒ $6.62
Hence "The change of Umberto will be $6.62".
For more about subtraction,
brainly.com/question/1927340
#SPJ1
Answer:
![\boxed{-3xy^{2}\sqrt [3] {2x^{2}}}](https://tex.z-dn.net/?f=%5Cboxed%7B-3xy%5E%7B2%7D%5Csqrt%20%5B3%5D%20%7B2x%5E%7B2%7D%7D%7D)
Step-by-step explanation:
Your expression is
![\sqrt [3] {-54x^{5}y^{6}}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B-54x%5E%7B5%7Dy%5E%7B6%7D%7D)
Here's how I would simplify it.
![\begin{array}{rcll}\sqrt [3] {-54x^{5}y^{6}} & = & \sqrt [3] {(-1)^{3}\times 2 \times 27 \times x^{2} \times x^{3} \times y^{6}} & \text{Factored the cubes}\\& = & \sqrt [3] {(-1)^{3} \times 3^{3}\times x^{3} \times y^{6}\times 2 \times x^{2}} & \text{Grouped the cubes}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcll%7D%5Csqrt%20%5B3%5D%20%7B-54x%5E%7B5%7Dy%5E%7B6%7D%7D%20%26%20%3D%20%26%20%5Csqrt%20%5B3%5D%20%7B%28-1%29%5E%7B3%7D%5Ctimes%202%20%5Ctimes%2027%20%5Ctimes%20x%5E%7B2%7D%20%5Ctimes%20x%5E%7B3%7D%20%5Ctimes%20y%5E%7B6%7D%7D%20%26%20%5Ctext%7BFactored%20the%20cubes%7D%5C%5C%26%20%3D%20%26%20%5Csqrt%20%5B3%5D%20%7B%28-1%29%5E%7B3%7D%20%5Ctimes%203%5E%7B3%7D%5Ctimes%20x%5E%7B3%7D%20%5Ctimes%20y%5E%7B6%7D%5Ctimes%202%20%5Ctimes%20x%5E%7B2%7D%7D%20%26%20%5Ctext%7BGrouped%20the%20cubes%7D%5C%5C%5Cend%7Barray%7D)
![\begin{array}{rcll}& = & \sqrt [3] {(-1)^{3} \times {3^{3}\times x^{3} \times y^{6}}} \times\sqrt [3] { 2 \times x^{2}} & \text{Separated the cubes}\\&=& \mathbf{-3xy^{2}\sqrt [3] {2x^{2}}} & \text{Took cube roots}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcll%7D%26%20%3D%20%26%20%5Csqrt%20%5B3%5D%20%7B%28-1%29%5E%7B3%7D%20%5Ctimes%20%7B3%5E%7B3%7D%5Ctimes%20x%5E%7B3%7D%20%5Ctimes%20y%5E%7B6%7D%7D%7D%20%5Ctimes%5Csqrt%20%5B3%5D%20%7B%202%20%5Ctimes%20x%5E%7B2%7D%7D%20%26%20%5Ctext%7BSeparated%20the%20cubes%7D%5C%5C%26%3D%26%20%5Cmathbf%7B-3xy%5E%7B2%7D%5Csqrt%20%5B3%5D%20%7B2x%5E%7B2%7D%7D%7D%20%26%20%5Ctext%7BTook%20cube%20roots%7D%5C%5C%5Cend%7Barray%7D)
![\text{The simplified expression is $\boxed{\mathbf{-3xy^{2}\sqrt [3] {2x^{2}}}}$}](https://tex.z-dn.net/?f=%5Ctext%7BThe%20simplified%20expression%20is%20%24%5Cboxed%7B%5Cmathbf%7B-3xy%5E%7B2%7D%5Csqrt%20%5B3%5D%20%7B2x%5E%7B2%7D%7D%7D%7D%24%7D)