1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
devlian [24]
3 years ago
11

If ~ p: 2 + 2 =4

Mathematics
2 answers:
Art [367]3 years ago
6 0

Answer:

A. \displaystyle 2 \times 2 = 4

Step-by-step explanation:

I could not make clarifications of what you are asking, but this is similar to \displaystyle 2 + 2 = 4.

I am joyous to assist you anytime.

vodka [1.7K]3 years ago
5 0

Answer:

A

Step-by-step explanation:

Just did the problem and got it right

You might be interested in
What is the surface area of the cylinder in terms of pi? The diagram is not drawn to scale.
bearhunter [10]
Surface Area = 2πr² + 2πrh 

Surface Area = 2π(7)² + 2π(7)(15) = 308π in²²

Answer: 308π in²
3 0
3 years ago
Working together, two ants named Aran and Beatrice can build an ant hill in 10 hours. Aran and Charlie can build the ant hill in
Nookie1986 [14]

Answer:

12

Step-by-step explanation:

7 0
2 years ago
Robert had $58.62 in his bank account. He got paid $142.76. He then bought a new jacket for $63.76. He also bought 2 new movies
Eddi Din [679]
Robert now has $135.64.
3 0
3 years ago
Read 2 more answers
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
If the expression 3x+10 is equal to 6 for some value of x, then what is the value of 3x+2 equal to for the same value of x ?
Murrr4er [49]

Answer:

149

Step-by-step explanation:

If the expression 3x+10 is equal to 6 for some value of x, then what is the value of 3x+2 equal to for the same value of x ?

8 0
3 years ago
Other questions:
  • In a study, 8 people ate a total of 1,312 pounds of potatoes in 2 years.
    11·1 answer
  • Find the equation of the line.<br> Use exact numbers.
    8·1 answer
  • Please help me out. :)
    11·1 answer
  • Marcus can buy 0.3 pound of sliced meat from a deli for $3.15. How much will 0.7 pound of sliced meat cost.
    10·1 answer
  • A bag contains 7 red marbles, 9 blue marbles, and 6 green marbles. what is the probability of choosing a marble that is not gree
    10·1 answer
  • A college student has taken a summer job to help pay swishing in one week he earned the following amounts Monday $45.90 Tuesday
    8·2 answers
  • Help what is greater?45.10 or 45.01???
    5·2 answers
  • Write an equation of a vertical line that contains the point (-2,5)
    7·1 answer
  • HALPPPPP :(((((((((((
    15·1 answer
  • If f(x) = mx +c, f(4) = 11 and f(5) = 13, find the value of f(2).​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!