Njfhuj gjjff yuku unkind hkkr ikhrb
1. The RNA that has an amino acid attached to it, and that binds to the codon on the mRNA, is called a tRNA.
tRNA are molecules involved in protein synthesis (translation) and those molecules connect codons from mRNA with the amino acids they encode.tRNA has anticodone that binds to mRNA codone.
2. The process, performed by the ribosome, of reading mRNA and synthesizing a protein is called translation.
Translation is a process of gene expression in which proteins are synthesized (translated from the codons on mRNA).
3. Initiation of translation always happens at the start codon of the mRNA.
Translation process can be divided into three stages: initiation (starting off), elongation (adding amino acids to peptide chain that is going to become protein) and termination (finishing up).
4. Amino acids are attached to tRNA by enzymes called aminoacyl-tRNA synthetase.
These enzymes are part of the elongation stage of translation and they catalyze the adding of amino acids.
5. Termination of translation happens when the ribosome hits a stop codon on the mRNA.
Termination is the stage in which the finished polypeptide chain (future protein) is released from the ribosome.
Answer:
True
Explanation:
<em>The three groups of organisms have the capability to cause different diseases in humans and other animals. The specific ones among them that can cause diseases are said to be pathogenic while those that are incapable of causing diseases are said to be non-pathogenic.</em>
Answer:
tropical, temperate, and polar
Answer: Protons contribute towards making ATP by producing proton-motive force that provides energy for ATP synthesis.
Explanation: In the respiratory chain, the transfer of electrons from one complex to another is accompanied by pumping of protons out of the matrix. This creates a difference in proton concentration and separation of charge across the mitochondrial inner membrane. The electrochemical energy inherent in this difference in proton concentration called proton-motive force is used to drive ATP synthesis as protons flow back passively into the matrix through a proton pore.