Linear programming which shows the best investment strategy for the client is Max Z=0.12I +0.09B and subject to constraints are :I+ B<=25000,
0.005 I +0.004B<=250.
Given maximum investment client can make is $55000, annual return= 9%, The investment advisor requires that at most $25,000 of the client's funds should be invested in the internet fund. The internet fund, which is the more risky of the two investment alternatives, has a risk rating of 5 per thousand dollars invested. the blue chip fund has a risk rating of 4 per thousand dollars invested.
We have to make a linear programming problem.
Let
I= Internet fund investment in thousands.
B=Blue chip fund investment in thousands.
Objective function:
Max Z=0.12I+0.09B
subject to following constraints:
Investment amount: I+ B<=25000
Risk Rating: 5/100* I+4/100*B<=250 or 0.005 I +0.004B<=250
I,B>=0.
Hence the objective function is Max Z=0.12 I+ 0.09 B.
Learn more about LPP at brainly.com/question/25828237
#SPJ4
You know a1.
So find a2, a3, and so on until a7.
a(1) = 12
a(2) = 16
a(3) = 20
a(4) = 24
a(5) = 28
a(6) = 32
a(7) = 36
Each is 4 more than the previous.
Answer:
4 + 60 + 300 + NaN + 70000 + 600000 + 1000000 + NaN + 900000000
I think this question is a part of another question; you can have any ratio that can add up to 114 cm.