1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lapo4ka [179]
3 years ago
15

Help me on this please

Mathematics
1 answer:
zalisa [80]3 years ago
8 0

Answer:

1. (x, y) → (x + 3, y - 2)

Vertices of the image

a) (-2, - 3)

b) (-2, 3)

c) (2, 2)

2. (x, y) → (x - 3, y + 5)

Vertices of the image

a) (-3, 2)

b) (0, 2)

c) (0, 4)

d) (2, 4)

3. (x, y) → (x + 4, y)

Vertices of the image

a) (-1, -2)

b) (1, -2)

c) (3, -2)

4. (x, y) → (x + 6, y + 1)

Vertices of the image

a) (1, -1)

b) (1, -2)

c) (2, -2)

d) (2, -4)

e) (3, -1)

f) (3, -3)

g) (4, -3)

h) (1, -4)

5. (x, y) → (x, y - 4)

Vertices of the image

a) (0, -2)

b) (0, -3)

c) (2, -2)

d) (2, -4)

6. (x, y) → (x - 1, y + 4)

Vertices of the image

a) (-5, 3)

b) (-5, -1)

c) (-3, 0)

d) (-3, -1)

Explanation:

To identify each <u><em>IMAGE</em></u> you should perform the following steps:

  • List the vertex points of the preimage (the original figure) as ordered pairs.
  • Apply the transformation rule to every point of the preimage
  • List the image of each vertex after applying each transformation, also as ordered pairs.

<u>1. (x, y) → (x + 3, y - 2)</u>

The rule means that every point of the preimage is translated three units to the right and 2 units down.

Vertices of the preimage      Vertices of the image

a) (-5,2)                                   (-5 + 3, -1 - 2) = (-2, - 3)

b) (-5, 5)                                  (-5 + 3, 5 - 2) = (-2, 3)

c) (-1, 4)                                   (-1 + 3, 4 - 2) = (2, 2)

<u>2. (x,y) → (x - 3, y + 5)</u>

The rule means that every point of the preimage is translated three units to the left and five units down.

Vertices of the preimage      Vertices of the image

a) (0, -3)                                   (0 - 3, -3 + 5) = (-3, 2)

b) (3, -3)                                   (3 - 3, -3  + 5) = (0, 2)

c) (3, -1)                                    (3 - 3, -1 + 5) = (0, 4)

d) (5, -1)                                    (5 - 3, -1 + 5) = (2, 4)

<u>3. (x, y) → (x + 4, y)</u>

The rule represents a translation 4 units to the right.

Vertices of the preimage   Vertices of the image

a) (-5, -2)                               (-5 + 4, -2) = (-1, -2)

b) (-3, -5)                               (-3 + 4, -2) = (1, -2)

c) (-1, -2)                                (-1 + 4, -2) = (3, -2)

<u>4. (x, y) → (x + 6, y + 1)</u>

Vertices of the preimage      Vertices of the image

a) (-5, -2)                                  (-5 + 6, -2 + 1) = (1, -1)

b) (-5, -3)                                  (-5 + 6, -3 + 1) = (1, -2)

c) (-4, -3)                                   (-4 + 6, -3 + 1) = (2, -2)

d) (-4, -5)                                  (-4 + 6, -5 + 1) = (2, -4)

e) (-3, -2)                                  (-3 + 6, -2 + 1) = (3, -1)

f) (-3, -4)                                   (-3 + 6, -4 + 1) = (3, -3)

g) (-2, -4)                                  (-2 + 6, -4 + 1) = (4, -3)

h) (-2, -5)                                  (-2 + 3, -5 + 1) = (1, -4)

<u>5. (x, y) → (x, y - 4)</u>

This is a translation four units down

Vertices of the preimage      Vertices of the image

a) (0, 2)                                    (0, 2 - 4) = (0, -2)

b) (0,1)                                      (0, 1 - 4) = (0, -3)

c) (2, 2)                                     (2, 2 - 4) = (2, -2)

d) (2,0)                                     (2, 0 - 4) = (2, -4)

<u>6. (x, y) → (x - 1, y + 4)</u>

This is a translation one unit to the left and four units up.

Vertices of the pre-image     Vertices of the image

a) (-4, -1)                                   (-4 - 1, -1 + 4) = (-5, 3)

b) (-4 - 5)                                  (-4 - 1, -5 + 4) = (-5, -1)

c) (-2, -4)                                  (- 2 - 1, -4 + 4) = (-3, 0)

d) (-2, -5)                                 (-2 - 1, -5 + 4) = (-3, -1)

You might be interested in
If a ! 0 and 5/x = (5+a) / (x+a) what is the value of x ?
gulaghasi [49]

Answer: 5

Step-by-step explanation:

\frac{5}{x}=\frac{5+a}{x+a}\\\\5x+5a=5x+xa\\\\5a=xa\\\\x=5

3 0
2 years ago
Line k is parallel to line l. Lines k and l are parallel. Lines m and n intersect to form 2 triangles. The top triangle has angl
AysviL [449]

Answer:

The line that is congruent to angle 4 is angle 1

hope this helped :)

7 0
3 years ago
Read 2 more answers
How to write four million, thirty
Fantom [35]

Four million and thirty is represented numerically by:

4, 000, 030

Hope it helped,

Happy homework/ study/ exam!

6 0
3 years ago
Read 2 more answers
What is the length of ef and the measure of d?
Natalka [10]
<span>The sum of angle D and the given angle should 90 so: 90 - 47 = 43 So D is 43.


</span>
3 0
3 years ago
Which is an example x-intercept of the graph of the function y=tan(x-(5pi/6))
emmainna [20.7K]
Answer: x = 5π/6

Explanation:

1) Given function:

y=tan(x- \frac{5 \pi }{6} )

2) x-intercept are the roots of the function, i.e. the solution to y = 0

3) to find when y = 0, you can either solve the equation or look at the graph.

4) Solving the equation you get:

y = 0 ⇒ tan(x - 5π/6) = 0 ⇒ x - 5π/6 = arctan(0)

arctan(0) is the angle whose tangent is zero,so this is 0

⇒ x - 5π/6 = 0 ⇒ x = 5π/6.

Then, one example of an x-intercept is x = 5π/6, which means that when x = 5π/6, the value of the function is 0.

Since, the tangent function is a periodic function, there are infinite x-intecepts, that is why the questions asks for one example and not all the values.

You can verify by replacing the value x = 5π/6 in the given function:

y = tan (5π/6 - 5π/6) = tan(0) = 0.
4 0
3 years ago
Read 2 more answers
Other questions:
  • What is the value of x in the equation - 3X+9<br>x+9= 3-37?​
    13·1 answer
  • I need help figuring out how 3(3) + 18 divided by 3(3) = 27
    5·1 answer
  • Describe a way you can use graham crackers to demonstrate the division problem 3 divided by 1/4 . Include the result in your des
    14·1 answer
  • Can someone help with my math question
    8·1 answer
  • Find a general solution to the differential equation â6yâ²=1+x+y+xy by solving the equation and then applying the initial condit
    8·1 answer
  • -15______= -3 what it this answer?
    8·1 answer
  • Solve the simultaneous equations 2x+2y=15
    7·2 answers
  • Have a limited time​
    8·1 answer
  • Find the length of x. Assume the triangles are similar.
    15·1 answer
  • Willis is older than Heard. The difference of their ages is 12 and the sum of their ages is 50. Find the age of each. ​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!