1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lapo4ka [179]
3 years ago
15

Help me on this please

Mathematics
1 answer:
zalisa [80]3 years ago
8 0

Answer:

1. (x, y) → (x + 3, y - 2)

Vertices of the image

a) (-2, - 3)

b) (-2, 3)

c) (2, 2)

2. (x, y) → (x - 3, y + 5)

Vertices of the image

a) (-3, 2)

b) (0, 2)

c) (0, 4)

d) (2, 4)

3. (x, y) → (x + 4, y)

Vertices of the image

a) (-1, -2)

b) (1, -2)

c) (3, -2)

4. (x, y) → (x + 6, y + 1)

Vertices of the image

a) (1, -1)

b) (1, -2)

c) (2, -2)

d) (2, -4)

e) (3, -1)

f) (3, -3)

g) (4, -3)

h) (1, -4)

5. (x, y) → (x, y - 4)

Vertices of the image

a) (0, -2)

b) (0, -3)

c) (2, -2)

d) (2, -4)

6. (x, y) → (x - 1, y + 4)

Vertices of the image

a) (-5, 3)

b) (-5, -1)

c) (-3, 0)

d) (-3, -1)

Explanation:

To identify each <u><em>IMAGE</em></u> you should perform the following steps:

  • List the vertex points of the preimage (the original figure) as ordered pairs.
  • Apply the transformation rule to every point of the preimage
  • List the image of each vertex after applying each transformation, also as ordered pairs.

<u>1. (x, y) → (x + 3, y - 2)</u>

The rule means that every point of the preimage is translated three units to the right and 2 units down.

Vertices of the preimage      Vertices of the image

a) (-5,2)                                   (-5 + 3, -1 - 2) = (-2, - 3)

b) (-5, 5)                                  (-5 + 3, 5 - 2) = (-2, 3)

c) (-1, 4)                                   (-1 + 3, 4 - 2) = (2, 2)

<u>2. (x,y) → (x - 3, y + 5)</u>

The rule means that every point of the preimage is translated three units to the left and five units down.

Vertices of the preimage      Vertices of the image

a) (0, -3)                                   (0 - 3, -3 + 5) = (-3, 2)

b) (3, -3)                                   (3 - 3, -3  + 5) = (0, 2)

c) (3, -1)                                    (3 - 3, -1 + 5) = (0, 4)

d) (5, -1)                                    (5 - 3, -1 + 5) = (2, 4)

<u>3. (x, y) → (x + 4, y)</u>

The rule represents a translation 4 units to the right.

Vertices of the preimage   Vertices of the image

a) (-5, -2)                               (-5 + 4, -2) = (-1, -2)

b) (-3, -5)                               (-3 + 4, -2) = (1, -2)

c) (-1, -2)                                (-1 + 4, -2) = (3, -2)

<u>4. (x, y) → (x + 6, y + 1)</u>

Vertices of the preimage      Vertices of the image

a) (-5, -2)                                  (-5 + 6, -2 + 1) = (1, -1)

b) (-5, -3)                                  (-5 + 6, -3 + 1) = (1, -2)

c) (-4, -3)                                   (-4 + 6, -3 + 1) = (2, -2)

d) (-4, -5)                                  (-4 + 6, -5 + 1) = (2, -4)

e) (-3, -2)                                  (-3 + 6, -2 + 1) = (3, -1)

f) (-3, -4)                                   (-3 + 6, -4 + 1) = (3, -3)

g) (-2, -4)                                  (-2 + 6, -4 + 1) = (4, -3)

h) (-2, -5)                                  (-2 + 3, -5 + 1) = (1, -4)

<u>5. (x, y) → (x, y - 4)</u>

This is a translation four units down

Vertices of the preimage      Vertices of the image

a) (0, 2)                                    (0, 2 - 4) = (0, -2)

b) (0,1)                                      (0, 1 - 4) = (0, -3)

c) (2, 2)                                     (2, 2 - 4) = (2, -2)

d) (2,0)                                     (2, 0 - 4) = (2, -4)

<u>6. (x, y) → (x - 1, y + 4)</u>

This is a translation one unit to the left and four units up.

Vertices of the pre-image     Vertices of the image

a) (-4, -1)                                   (-4 - 1, -1 + 4) = (-5, 3)

b) (-4 - 5)                                  (-4 - 1, -5 + 4) = (-5, -1)

c) (-2, -4)                                  (- 2 - 1, -4 + 4) = (-3, 0)

d) (-2, -5)                                 (-2 - 1, -5 + 4) = (-3, -1)

You might be interested in
Which is the best description of the equivalency of the two expressions? Expression 1 Expression 2 5 x squared minus 2 x minus 4
lina2011 [118]

Answer:

The correct option is (D).

Step-by-step explanation:

The two expressions are:

\text{Exp}_{1}=5x^{2}-2x-4+6x+3\\\\\text{Exp}_{2}=6x^{2}-6x+6-x^{2}+10x-7

On simplifying both the expressions we get:

\text{Exp}_{1}=5x^{2}+4x-1\\\\\text{Exp}_{2}=5x^{2}+4x-1

Compute the value of both expressions for <em>x</em> = 2 as follows:

\text{Exp}_{1}=5(2)^{2}+4(2)-1=27\\\\\text{Exp}_{2}=5(2)^{2}+4(2)-1=27

The value of both expressions are same for <em>x</em> = 2.

Thus, the correct option is:

"They are equivalent because when x = 2, the two expressions have the same value."

6 0
3 years ago
Complete the table below to solve the equation 2.5x − 10.5 = 64(0.5x).
natima [27]
The table answers for the first equation are
-5.5
-3
-.5
2
3.5
The table answers for the second equation are
16
8
4
0
-4
8 0
3 years ago
Please help I really do not understand its turned in today. I WILL GIVE BRAINLIEST :)
8090 [49]

Answer:

Total area of new carpeting installed: 368

Step-by-step explanation:

What I did is too complicated to write down, so I'll just show you the math:

(12 * 8) * 2 (The area of the bedrooms)

11 * 16 (The area of the livingroom)

6 0
2 years ago
Prove the identity<br> cos(A+B+C)=cosAcosBcosC-cosAsinBsinC-sinAcosBcosC-sinAsinBcosC
blagie [28]
Hello !

cos (a+b) = cos a cos b - sin a sin b
sin (a+b) = sin a cos b + sin b cos a

cos (a+b+c) = cos (a+(b+c))
cos (a+b+c) = cos a cos (b+c) - sin a sin (b+c)
cos (a+b+c) = cos a (cos b cos c - sin b sin c) - sin a (sin b cos c + sin c cos b)
cos (a+b+c)=cos a cos b cos c - cos a sin b sin c - sin a sin b cos c - sin a cos b sin c
4 0
2 years ago
dante has been putting one peeny in his bank everyday Now he has 161 pennies Hor how many weeks has d
nikklg [1K]
All you need to do is divide 161 by 7 and get 23 weeks

6 0
3 years ago
Other questions:
  • Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).
    5·1 answer
  • Please answer question now
    8·1 answer
  • Does this table show a proportional relationship? If so, what is the constant of proportionality?
    15·2 answers
  • What is a+2 divided by 2 = -1?
    12·1 answer
  • Find m∠4 if m∠1 = 100°
    14·1 answer
  • Can someone please help with this math question??
    14·1 answer
  • PLEASE HELP ME
    8·1 answer
  • Which of the quotient of 6 divided by 1/3​
    5·1 answer
  • Sinead bought 2 shirts for $15.81 each and a pair of shoes for $42.81. If she paid for the items with a $100 bill, how much chan
    5·2 answers
  • A 25 foot rope was cut into 2 pieces with the length being a ratio of 5 to 12.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!