1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lapo4ka [179]
3 years ago
15

Help me on this please

Mathematics
1 answer:
zalisa [80]3 years ago
8 0

Answer:

1. (x, y) → (x + 3, y - 2)

Vertices of the image

a) (-2, - 3)

b) (-2, 3)

c) (2, 2)

2. (x, y) → (x - 3, y + 5)

Vertices of the image

a) (-3, 2)

b) (0, 2)

c) (0, 4)

d) (2, 4)

3. (x, y) → (x + 4, y)

Vertices of the image

a) (-1, -2)

b) (1, -2)

c) (3, -2)

4. (x, y) → (x + 6, y + 1)

Vertices of the image

a) (1, -1)

b) (1, -2)

c) (2, -2)

d) (2, -4)

e) (3, -1)

f) (3, -3)

g) (4, -3)

h) (1, -4)

5. (x, y) → (x, y - 4)

Vertices of the image

a) (0, -2)

b) (0, -3)

c) (2, -2)

d) (2, -4)

6. (x, y) → (x - 1, y + 4)

Vertices of the image

a) (-5, 3)

b) (-5, -1)

c) (-3, 0)

d) (-3, -1)

Explanation:

To identify each <u><em>IMAGE</em></u> you should perform the following steps:

  • List the vertex points of the preimage (the original figure) as ordered pairs.
  • Apply the transformation rule to every point of the preimage
  • List the image of each vertex after applying each transformation, also as ordered pairs.

<u>1. (x, y) → (x + 3, y - 2)</u>

The rule means that every point of the preimage is translated three units to the right and 2 units down.

Vertices of the preimage      Vertices of the image

a) (-5,2)                                   (-5 + 3, -1 - 2) = (-2, - 3)

b) (-5, 5)                                  (-5 + 3, 5 - 2) = (-2, 3)

c) (-1, 4)                                   (-1 + 3, 4 - 2) = (2, 2)

<u>2. (x,y) → (x - 3, y + 5)</u>

The rule means that every point of the preimage is translated three units to the left and five units down.

Vertices of the preimage      Vertices of the image

a) (0, -3)                                   (0 - 3, -3 + 5) = (-3, 2)

b) (3, -3)                                   (3 - 3, -3  + 5) = (0, 2)

c) (3, -1)                                    (3 - 3, -1 + 5) = (0, 4)

d) (5, -1)                                    (5 - 3, -1 + 5) = (2, 4)

<u>3. (x, y) → (x + 4, y)</u>

The rule represents a translation 4 units to the right.

Vertices of the preimage   Vertices of the image

a) (-5, -2)                               (-5 + 4, -2) = (-1, -2)

b) (-3, -5)                               (-3 + 4, -2) = (1, -2)

c) (-1, -2)                                (-1 + 4, -2) = (3, -2)

<u>4. (x, y) → (x + 6, y + 1)</u>

Vertices of the preimage      Vertices of the image

a) (-5, -2)                                  (-5 + 6, -2 + 1) = (1, -1)

b) (-5, -3)                                  (-5 + 6, -3 + 1) = (1, -2)

c) (-4, -3)                                   (-4 + 6, -3 + 1) = (2, -2)

d) (-4, -5)                                  (-4 + 6, -5 + 1) = (2, -4)

e) (-3, -2)                                  (-3 + 6, -2 + 1) = (3, -1)

f) (-3, -4)                                   (-3 + 6, -4 + 1) = (3, -3)

g) (-2, -4)                                  (-2 + 6, -4 + 1) = (4, -3)

h) (-2, -5)                                  (-2 + 3, -5 + 1) = (1, -4)

<u>5. (x, y) → (x, y - 4)</u>

This is a translation four units down

Vertices of the preimage      Vertices of the image

a) (0, 2)                                    (0, 2 - 4) = (0, -2)

b) (0,1)                                      (0, 1 - 4) = (0, -3)

c) (2, 2)                                     (2, 2 - 4) = (2, -2)

d) (2,0)                                     (2, 0 - 4) = (2, -4)

<u>6. (x, y) → (x - 1, y + 4)</u>

This is a translation one unit to the left and four units up.

Vertices of the pre-image     Vertices of the image

a) (-4, -1)                                   (-4 - 1, -1 + 4) = (-5, 3)

b) (-4 - 5)                                  (-4 - 1, -5 + 4) = (-5, -1)

c) (-2, -4)                                  (- 2 - 1, -4 + 4) = (-3, 0)

d) (-2, -5)                                 (-2 - 1, -5 + 4) = (-3, -1)

You might be interested in
HELP!!!
Art [367]
Sharon will run out of granola in 12 days. 

<span>Work: 8/(2/3) = 12 </span>

<span>Divide the total number of cups of granola she has (8) and divide it by the constant amount that is consumed each day (2/3) and you get 12 days.

Hope i helped with this!</span>
4 0
3 years ago
Read 2 more answers
What is the value of x/4y when x=16 and y=2
OverLord2011 [107]
The answer is 8.
16/4*2=8

8 0
3 years ago
The people who "consume" or use the travel product are called _____.
xeze [42]
I believe its B.

Hope this helps!
3 0
3 years ago
Read 2 more answers
Is (-2,-3) a solution of the graphed system of inequalities?
makkiz [27]
No. A solution is any co ordinated that lies in the blank space on the graph. (-2,-3) is in the blue shades section so it is not a solution.
4 0
3 years ago
For every 4 gallons of green paint he uses 3 gallons of blue paint. Drag the correct number of each type of paint into the box t
Inga [223]

Answer:

Amount of green color used =

\dfrac{64}{7}\text{ gallons}

Step-by-step explanation:

We are given the following in the question:

Every  4 gallons of green paint is mixed with 3 gallons of blue paint. to make a particular shade.

Ratio of green color to blue paint can be calculated as:

=\dfrac{\text{Amount of green color}}{\text{Amount of blue color}}\\\\=\dfrac{4}{3}

Amount of shade = 16

Amount of green paint = 4x

Amount of blue paint = 3x

Thus, we can write:

4x + 3x = 16\\7x = 16\\\\x = \dfrac{16}{7}

Amount of green color used =

4x = 4\times  \dfrac{16}{7} = \dfrac{64}{7}\text{ gallons}

Amount of blue paint used =

3x = 3\times  \dfrac{16}{7} = \dfrac{48}{7}\text{ gallons}

4 0
3 years ago
Other questions:
  • The box plot represents the number of minutes customers spend on hold when calling a company. A number line goes from 0 to 10. T
    15·2 answers
  • Jerry is making a strawberry smoothie. which measure is greatest, the amount of milk, cottage cheese, or strawberries?
    10·1 answer
  • Which table corresponds to the function
    7·2 answers
  • An average soccer player travels 7 miles during a game. A typical field is 105 meters long. How many times did the average socce
    15·2 answers
  • A circle has a radius of 4 meters.
    7·1 answer
  • Simplify:<br> (3xy^3)(2x^3y)<br><br> (Please show your work)
    8·1 answer
  • To earn a B in your algebra course, you must achieve an unrounded test average between 84 and 86, inclusive. You scored 86, 85,
    5·1 answer
  • Leah has some lessons stan's driving school. The total cost of the lessons is £305.50
    13·1 answer
  • If AABC ~ ADEF, which pair of angles are always congruent?
    9·1 answer
  • Solve the equation.<br><br> 3n + 2= 8 + 2n<br> A. 3<br> B. 4<br> C. 5<br> D. 6
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!