<u>Answer:</u>
5 hours was Aaron at the sitter
<u>Explanation:
</u>
Cost of baby sitting for the first hour: 10
Cost of baby sitting for additional hour= 12
Total cost of babysitting= 58
Since the cost of first hour is 10
Hence the remaining cost after first hour
= 54-10
=48
Which means 1 hour is consumed in the first hour
Now to calculate the remaining hours for every additional hour
= 
=4 hours
Hence the total hour Aaron was with the sitter
= 1 hour + 4 hours
= 5 hours
If tan (x)+pi/6=0
thn
tan (x)=-pi/6
take atan of both sides
x=atan (-pi/6)
x= -0.4823 rad
= -27.636 deg
Answer:
12.045 is already in base 10, since it can'be binary or hexadecimal,
it's a denary(decimal) number, and decimal numbers are base 10
The <em>directional</em> derivative of
at the given point in the direction indicated is
.
<h3>How to calculate the directional derivative of a multivariate function</h3>
The <em>directional</em> derivative is represented by the following formula:
(1)
Where:
- Gradient evaluated at the point
.
- Directional vector.
The gradient of
is calculated below:
(2)
Where
and
are the <em>partial</em> derivatives with respect to
and
, respectively.
If we know that
, then the gradient is:
![\nabla f(r_{o}, s_{o}) = \left[\begin{array}{cc}\frac{s}{1+r^{2}\cdot s^{2}} \\\frac{r}{1+r^{2}\cdot s^{2}}\end{array}\right]](https://tex.z-dn.net/?f=%5Cnabla%20f%28r_%7Bo%7D%2C%20s_%7Bo%7D%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7Bs%7D%7B1%2Br%5E%7B2%7D%5Ccdot%20s%5E%7B2%7D%7D%20%5C%5C%5Cfrac%7Br%7D%7B1%2Br%5E%7B2%7D%5Ccdot%20s%5E%7B2%7D%7D%5Cend%7Barray%7D%5Cright%5D)
![\nabla f (r_{o}, s_{o}) = \left[\begin{array}{cc}\frac{3}{1+1^{2}\cdot 3^{2}} \\\frac{1}{1+1^{2}\cdot 3^{2}} \end{array}\right]](https://tex.z-dn.net/?f=%5Cnabla%20f%20%28r_%7Bo%7D%2C%20s_%7Bo%7D%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B1%2B1%5E%7B2%7D%5Ccdot%203%5E%7B2%7D%7D%20%5C%5C%5Cfrac%7B1%7D%7B1%2B1%5E%7B2%7D%5Ccdot%203%5E%7B2%7D%7D%20%5Cend%7Barray%7D%5Cright%5D)
![\nabla f (r_{o}, s_{o}) = \left[\begin{array}{cc}\frac{3}{10} \\\frac{1}{10} \end{array}\right]](https://tex.z-dn.net/?f=%5Cnabla%20f%20%28r_%7Bo%7D%2C%20s_%7Bo%7D%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B10%7D%20%5C%5C%5Cfrac%7B1%7D%7B10%7D%20%5Cend%7Barray%7D%5Cright%5D)
If we know that
, then the directional derivative is:
![\nabla_{\vec v} f = \left[\begin{array}{cc}\frac{3}{10} \\\frac{1}{10} \end{array}\right] \cdot \left[\begin{array}{cc}5\\10\end{array}\right]](https://tex.z-dn.net/?f=%5Cnabla_%7B%5Cvec%20v%7D%20f%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B10%7D%20%5C%5C%5Cfrac%7B1%7D%7B10%7D%20%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%5C%5C10%5Cend%7Barray%7D%5Cright%5D)

The <em>directional</em> derivative of
at the given point in the direction indicated is
. 
To learn more on directional derivative, we kindly invite to check this verified question: brainly.com/question/9964491