Answer:
98.88
Step-by-step explanation:
Given: They cheered 12 rounds. Each round = 8.24
To find the total number, multiply how much one round is with the total number of rounds.
8.24
× 12
-----------
1648
+ 8240
----------
98.88
Each girl cheered 98.88 minutes. If you need this estimated, the answer would be 99 minutes.
15 is the answer hope this helps
Answer:
Like terms are similar and terms are different.
Like terms :-
They are similar.
Terms :-
One has an exponent and other does not which means they are not like terms and are only terms.
Hope this helps, thank you :) !!
Answer:
Step-by-step eThe first table shows the teams with the four best records halfway through the season. The second table shows the full season records for the same four teams. Which team had the best record during the second half of the season?
Record for the First Half of the Season Record for the Season
Teams Wins Loss Teams Wins Loss
1 26 14 1 59 21
2 27 13 2 27 13
3 25 15 3 25 15
4 24 16 4 24 16
Expert Answer
xplanation:
The differences between the trapezoidal rule and simpson's rule is -
The trapezoidal rule and Simpson's method, the latter a set of formulas of varying complexity, are both Newton-Cotes formulas, that are used to examine and model complex curves.
<h3>What is
trapezoidal rule?</h3>
The trapezoidal rule is just an integration rule that divides a curve into small trapezoids to calculate the area under it. A area under the curve is calculated by adding the areas of all the small trapezoids.
Follow the steps below to use the trapezoidal rule to determine the area under given curve, y = f. (x).
- Step 1: Write down the total number of sub-intervals, "n," as well as the intervals "a" and "b."
- Step 2: Use the formula to determine the width of the sub-interval, h (or) x = (b - a)/n.
- Step 3: Use the obtained values to calculate this same approximate area of a given curve, ba f(x)dx Tn = (x/2) [f(x0) + 2 f(x1) + 2 f(x2) +....+ 2 f(n-1) + f(n)], where xi = a + ix
<h3>What is
Simpson's method?</h3>
Simpson's rule is used to approximate the area beneath the graph of the function f to determine the value of the a definite integral (such that, of the form b∫ₐ f(x) dx.
Simpson's 1/3 rule provides a more precise approximation. Here are the steps for using Simpson's rule to approximate the integral ba f(x) dx.
- Step 1: Figure out the values of 'a' & 'b' from interval [a, b], as well as the value of 'n,' which represents the number of subintervals.
- Step 2: Determine the width of every subinterval using the formula h = (b - a)/n.
- Step 3: Using the interval width 'h,' divide this same interval [a, b] [x₀, x₁], [x₁, x₂], [x₂, x₃], ..., [xn-2, xn-1], [xn-1, xn] into 'n' subintervals.
- Step 4: In Simpson's rule formula, substitute all of these values and simplify. b∫ₐ f(x) dx ≈ (h/3) [f(x0)+4 f(x1)+2 f(x2)+ ... +2 f(xn-2)+4 f(xn-1)+f(xn)].
Thus, sometimes we cannot solve an integral using any integration technique, and other times we don't have a particular function to integrate. Simpson's rule aids in approximating the significance of the definite integral in such cases.
To know more about the Simpson's method and trapezoidal rule, here
brainly.com/question/16996659
#SPJ4