Answer:
The first two fingers may be stronger due to the fact that they are used the most often and could build up more strength and dexterity. Another reason the first two fingers may be stronger could be due to the fact that the ulnar muscle that controls digits 4 and 5 is smaller than the radial muscle.
Explanation:
Pinch strength is a widely used measurement of hand function. A direct relationship between pinch strength and function has been demonstrated and illustrates the importance of hand strength in clinical practice.There is a difference in grip strength in the dominant and non-dominant hands.Dominant hand is significantly stronger. According to the pinch strength data, he index finger and the thumb are the strongest, the middle finger and the thumb are the second strongest, the ring finger and the thumb are the third strongest, and the little finger and the thumb are last. The difference is the largest between the middle finger and the thumb and the ring finger and the thumb.
The first two fingers may be stronger due to the fact that they are used the most often and could build up more strength and dexterity. Another reason the first two fingers may be stronger could be due to the fact that the ulnar muscle that controls digits 4 and 5 is smaller than the radial muscle.
Difference in the pinch strength may be due to one possible reason that the radial muscle is larger than the ulnar muscle which controls digits 4 and 5. Another reason could be that you generally use the thumb, index, and middle fingers more than the ring and little finger, therefore the first three fingers have more strength and muscle memory.
I believe those are both non-contact forces bc it's not something physical
Answer:
B) Tissue is made of different types of cells.
D) Organs are made of different types of tissue.
Explanation:
The tissues are made of different types of cells. The organs are also made of different types of tissue. There is no need of same types of tissues to make organs. Thus, option (B) and (D) is correct answer.
Answer: I could but how do I show
Explanation:
Answer:
When the required direction of transport is opposed to concentration levels, a cell <u>will </u> expend energy to force<u> ions</u> across its membrane.
Explanation:
If the concentration gradient is opposite to the direction of transport of minerals, then the cell will use energy to transport mineral ions from a lower concentration to a higher concentration. The most common process through which this happens is termed as the active transport.
The process of active transport is opposite to passive transport. In passive transport, molecules move from a higher concentration to a lower concentration.