They are both involuntary
A 3-base deletion in the AAUAAA sequence in the 3' untranslated region of an mRNA that eliminates the AAU, thereby preventing RNA polymerase from polyadenylation the mRNA would have the effect of; decreasing the number copies of the polyeptide that would be translated from this mRNA. A deletion is a mutation in which a part of a chromosome or a sequence of DNA is lost during DNA replication.
The question has been answered itself but the answer will contain the detail explanation.
Answer:
1. The replication fork formation during DNA replication is important for the continuity and the addition of the further base pair on the template. The DNA initiation process starts by the formation of replication fork.
2. The okazaki fragments are the short DNA fragments that are formed on the lagging strand. These fragments are later joined by the enzyme DNA ligase.
3. Leading strand is the continuous strand that formed during the DNA replication. The direction of the leading strand is 5' to 3' .
4. DNA polymerase is the main replicating enzyme during the DNA replication process. Different types of DNA polymerase with multiple subunits are present in prokaryotes and eukaryotes.
5. The new DNA that are formed from the parental strand and complementary with each other are called daughter DNA.
Answer:
5.6L
Explanation:
Given parameters:
number of moles = 0.25mol
pressure on gas = 1atm
temperature = 273K
Gas constant R = 0.0821Latm/molK
Unknown:
Volume of gas = ?
Solution:
Using the ideal gas equation, we can solve this problem. The equation is a combination of the three gas laws: Boyle's law, Charles's law and Avogadro's law.
It is mathematically expressed as;
PV = nRT
where P is the pressure
V is the volume
R is the gas constant
T is the temperature
n is the number of moles
All the parameters are in the appropriate units and we simply solve for the volume of the gas;
1 x V = 0.25 x 0.0821 x 273
V = 5.6L
Answer:
2. Alec Jeffreys
Explanation:
'DNA fingerprinting' or DNA typing (profiling) as it is now known, was first described in 1985 by an English geneticist named Alec Jeffreys. Dr. Jeffreys found that certain regions of DNA contained DNA sequences that were repeated over and over again next to each other.