let's firstly convert the mixed fractions to improper fractions, and then use the LCD, which in this case is 4, to sum them up.
![\bf \stackrel{mixed}{3\frac{1}{4}}\implies \cfrac{3\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{13}{4}}~\hfill \stackrel{mixed}{4\frac{3}{4}}\implies \cfrac{4\cdot 4+3}{4}\implies \stackrel{improper}{\cfrac{19}{4}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{13}{4}+\cfrac{19}{4}\implies \stackrel{\textit{using the LCD of 4}}{\cfrac{13+19}{4}}\implies \cfrac{32}{4}\implies 8](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B3%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B3%5Ccdot%204%2B1%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B13%7D%7B4%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B4%5Cfrac%7B3%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B4%5Ccdot%204%2B3%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B19%7D%7B4%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Ccfrac%7B13%7D%7B4%7D%2B%5Ccfrac%7B19%7D%7B4%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Busing%20the%20LCD%20of%204%7D%7D%7B%5Ccfrac%7B13%2B19%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B32%7D%7B4%7D%5Cimplies%208)
Answer:
Volume = 12
Step-by-step explanation:
30.41592653 to work this out you need to times your diameter by Pi in the case 20 x Pi
Y = -x2 + 5x + 36 <span>→ y = -(x2 -5x -36)
</span><span>→ y = -(x2 - 9x +4x - 36)
</span><span>→ y = -[x(x-9) + 4(x - 9)]
</span><span>→ y = -(x - 9)(x + 4)
Your answer would be </span>y=-(x-9)(x+4).
Ok so first we need to work out the vertical line in the middle (ab) using Pythagoras
Square root(7.5^2+4.9^2) to get 8.958794562
Now we know the length of the line ab so we can work out x using trigonometry
Since line ab is opposite the angle and x is adjacent (or not the hypotenuse the slope) the tan rule is used which is tan(0)=o/a
So tan(55.8)=8.9587../a
*a. *a
/tan(55.8). /tan(55.8)
a=8.9587../tan(55.8)
a=6.088390497
a=6.09
x=6.09