Answer:
f⁻¹(x) = x - 3
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Functions
- Function Notation
- Inverse Functions
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
f(x) = x + 3
<u>Step 2: Find</u>
- Swap: x = y + 3
- [Subtraction Property of Equality] Isolate <em>y</em>: x - 3 = y
- Rewrite: f⁻¹(x) = x - 3
Answer:
About 630 seventh-grade students would like to snorkel
Step-by-step explanation:
if you do
7/9 x 90 equals 630/810 total students
5 100ml cups and 1 500 ml cup
and 2 500 ml cups
Answer :
Let the first term of both the terms be
and last term be 
Now, by using the mid point formula to find the mid point of the segment -

Now, by substituting the values of both x and y -

Adding -7 and 6 -

Now, move the negative in front of the fraction -

Answer:


Step-by-step explanation:
Given

Solving (a):
Find k
To solve for k, we use the definition of joint probability function:

Where

Substitute values for the interval of x and y respectively
So, we have:

Isolate k

Integrate y, leave x:
![k \int\limits^2_{0} y {dx} \, [0,x/2]= 1](https://tex.z-dn.net/?f=k%20%5Cint%5Climits%5E2_%7B0%7D%20y%20%7Bdx%7D%20%5C%2C%20%5B0%2Cx%2F2%5D%3D%201)
Substitute 0 and x/2 for y


Integrate x
![k * \frac{x^2}{2*2} [0,2]= 1](https://tex.z-dn.net/?f=k%20%2A%20%5Cfrac%7Bx%5E2%7D%7B2%2A2%7D%20%5B0%2C2%5D%3D%201)
![k * \frac{x^2}{4} [0,2]= 1](https://tex.z-dn.net/?f=k%20%2A%20%5Cfrac%7Bx%5E2%7D%7B4%7D%20%5B0%2C2%5D%3D%201)
Substitute 0 and 2 for x
![k *[ \frac{2^2}{4} - \frac{0^2}{4} ]= 1](https://tex.z-dn.net/?f=k%20%2A%5B%20%5Cfrac%7B2%5E2%7D%7B4%7D%20-%20%5Cfrac%7B0%5E2%7D%7B4%7D%20%5D%3D%201)
![k *[ \frac{4}{4} - \frac{0}{4} ]= 1](https://tex.z-dn.net/?f=k%20%2A%5B%20%5Cfrac%7B4%7D%7B4%7D%20-%20%5Cfrac%7B0%7D%7B4%7D%20%5D%3D%201)
![k *[ 1-0 ]= 1](https://tex.z-dn.net/?f=k%20%2A%5B%201-0%20%5D%3D%201)
![k *[ 1]= 1](https://tex.z-dn.net/?f=k%20%2A%5B%201%5D%3D%201)

Solving (b): 
We have:

Where 

To find
, we use:

So, we have:



Integrate x leave y
![P(x > 3y) = \int\limits^2_0 x [0,y/3]dy](https://tex.z-dn.net/?f=P%28x%20%3E%203y%29%20%3D%20%5Cint%5Climits%5E2_0%20%20x%20%5B0%2Cy%2F3%5Ddy)
Substitute 0 and y/3 for x
![P(x > 3y) = \int\limits^2_0 [y/3 - 0]dy](https://tex.z-dn.net/?f=P%28x%20%3E%203y%29%20%3D%20%5Cint%5Climits%5E2_0%20%20%5By%2F3%20-%200%5Ddy)

Integrate
![P(x > 3y) = \frac{y^2}{2*3} [0,2]](https://tex.z-dn.net/?f=P%28x%20%3E%203y%29%20%3D%20%5Cfrac%7By%5E2%7D%7B2%2A3%7D%20%5B0%2C2%5D)
![P(x > 3y) = \frac{y^2}{6} [0,2]\\](https://tex.z-dn.net/?f=P%28x%20%3E%203y%29%20%3D%20%5Cfrac%7By%5E2%7D%7B6%7D%20%5B0%2C2%5D%5C%5C)
Substitute 0 and 2 for y



